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Abstract

Newton’s method provides one of the earliest insight in optimization theories.
Based on gradient descent, a lot of optimization theories including momentum,
adaptive learning, sign of gradient, second-order optimization, variance reduc-
tion and scheduler-free optimization have been proposed. However, there is
a lack of comprehensive and clear summary of these approaches with unified
notation system. This paper attempts to give a systematic, explicit and con-
cise formulation of over 100 optimization methods in deep learning with ci-
tation, which is potential for promoting innovation in optimization theory in
deep learning, while facilitating relevant researchers to search for references.
And the related materials can be found in https://github.com/lauyikfung/
A-Summary-Sheet-of-Optimization-in-Deep-Learning.

1 Introduction

Optimization lies at the heart of deep learning, facilitating the training process of deep neural net-
works nowadays, including large language models (Team et al., 2025; Liu et al., 2024a; Grattafiori
et al., 2024)(Figure 1), and computer vision models (Ramesh et al., 2022; Liu et al., 2023). From
the foundational principles of Newton’s method, numerous optimization theories has emerged, sig-
nificantly enhancing the efficiency and effectiveness of training deep neural networks. These ad-
vancements encompass a wide array of techniques, including momentum-based methods, adaptive
learning rate strategies, approaches leveraging the sign of gradients, second-order optimization tech-
niques, variance reduction schemes, and even scheduler-free optimization paradigms. Despite the
proliferation of these innovative methods, a comprehensive and clearly structured summary, partic-
ularly one employing a unified notation system, has been notably absent. This gap often poses a
challenge for researchers seeking to navigate the vast and rapidly evolving field of deep learning op-
timization, hindering both the promotion of new innovations and the efficient discovery of relevant
references.

This paper aims to bridge this gap by presenting a systematic, explicit, and unified formulation of
more than 100 optimization methods for deep learning. Each method is documented with appro-
priate citations, aiming to provide a singular, accessible resource for the research community. By
offering a unified framework and clear descriptions, this work seeks to foster further innovation in
optimization theory within deep learning and to significantly streamline the process for researchers
to identify and utilize relevant methodologies.

2 From Gradient Descent to Adaptive Learning

2.1 Notations

In the paper, f(θt) denotes the deep learning network at t-th iteration with parameter θt, which
is usually regarded as a vector except for second-order methods. The objective is J(θt) and the
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Figure 1: A brief history of large language models. Some optimizers are used in train-
ing well-known large language models. The base figure is from https://medium.com/@lmpo/
a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a

gradient is ∇θJ(θt) = ∇f(θt, ξt) = gt, where the input is ξt by default. Moreover, ∥x∥ = ∥x∥2
denotes the 2-norm, while |x| denotes taking the absolute value element-wisely. η is the learning
rate or step size, and it may change over iterations unless specific explanation. We just omit the
initialization of parameters and state variables for simplicity.

2.2 Newton’s Method

For Newton’s method, f(θ + ϵ) = f(θ) + ϵ⊤∇f(θ) + 1
2ϵ

⊤Hϵ +O(∥ϵ∥3), where H = ∇2f(θ) is
the Hessian matrix (Zhang et al., 2021).

For first-order method, the second-order and higher-order terms (12ϵ
⊤Hϵ + O(∥ϵ∥3)) are ignored

since they have relatively lower influence on the convergence of training and much harder to com-
pute, and the update rule comes to:

θt+1 = θt − η∇f(θt),

where η = −ϵ is the step size.

While in second-order methods, only the higher-order terms (O(∥ϵ∥3)) are ignored. Since at the
minimum of f , ∇θf(θ) = 0, then ϵ = −H−1∇f(θ), and it comes to:

θt+1 = θt − ηH−1∇f(θt),

where η is the step size.

2.3 Gradient Descent (GD)

The gradient descent method is the first-order approximation of Newton method. Full GD:

• Using full datasets for gradient descent, 1. θt+1 = θt − η∇θJ(θt) = θt − ηgt. Here and
below, gt is defined the gradient of full data/mini batch data on θt.

• Convergence O( 1
T ). Here the convergence is defined by f(xT )− f∗

Stochastic GD (SGD): Using one sample per step, convergence O( 1√
T
)

Batch GD (BGD): Using small batch (size=b) per steps, convergence O( 1√
bT

+ 1
T )
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Figure 2: Summary of all the optimizers covered in this paper.

2.4 Momentum and Related

Momemtum (Grum, 2023) mt+1 = γmt + η∇θJ(θt), θt+1 = θt −mt+1

Nestorov’s Accelerated Gradient (NAG) (Nesterov, 1983) mt+1 = γmt + η∇θJ(θt − γmt),
θt+1 = θt −mt+1

ASGD (Polyak & Juditsky, 1992) θt+1 = θt − η · 1
t+1

∑t
i=1 gi

Online Newton Step (ONS) (Hazan et al., 2007) rt = rt−1 + g2t , θt+1 = θt − η
rt+ϵgt

Normalized Gradient Descent (NGD) (Hazan et al., 2015) θt+1 = θt − η gt
||gt|| .

AdaGrad (Duchi et al., 2011) rt = rt−1 + g2t , θt+1 = θt − η√
rt+ϵgt

AdaGrad-Norm (Ward et al., 2020) rt = rt−1 + ∥gt∥2, θt+1 = θt − η√
rt+ϵgt
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AdaDelta (Zeiler, 2012) vt = ρvt−1+(1−ρ)g2t , θt = θt−1−η
√
ut−1√
vt+ϵgt,ut = ρut−1+(1−ρ)∆θ2t ,

where ∆θt = θt − θt−1

RMSProp (Tieleman & Hinton, 2012) vt = ρvt−1+(1−ρ)g2t (EMA (Exponential Moving Average)
of the squared gradient), θt+1 = θt − η√

vt+ϵgt

pbSGDM (Zhou et al., 2020a) vt+1 = βvt − ηsign(gt)|gt|γ , θt+1 = θt + vt+1, when β = 0, it
reduces to pbSGD, and when γ = 0, it reduces to SGD.

3 Adam and Derivatives

Adam (Kingma & Ba, 2015)

• mt = β1mt−1 + (1− β1)gt (EMA of gradient, use mt below if have same expression)

• vt = β2vt−1+(1−β2)g2t (EMA of squared gradient, use vt below if have same expression)

• θt+1 = θt − η m̂t√
v̂t+ϵ

, where m̂t = mt

1−βt1
, v̂t = vt

1−βt2
(Use m̂t or v̂t below if have same

expression)

3.1 Other forms for Adam

3.1.1 Hessian Matrices

θt+1 = argminθ{η ⟨mt, θ⟩ + 1
2 ||θ − θt||2Ht

}. In closed form: θt+1 = θt − ηH−1
t mt. (In some

works, Pt = H−1
t ∈ S++ is the preconditioning matrix or preconditioner (Lau et al., 2025).)

• Ht =
√

diag(vt) · 1−βt1√
1−βt2

for AdamW;

• Ht =
√

diag(m2
t ) for Lion;

• Ht = (
∑t

τ=1 GtG
⊤
t )

1/4 ⊗ (
∑t

τ=1 G
⊤
t Gt)

1/4 for Shampoo.

3.1.2 Matrix form of vt

θt+1 =
∏

F,
√
Vt
(θt − ηtmt/

√
v̂t), where θ ∈ F , Vt = diag(v̂t)

3.2 Derivatives of Adam

In the following algorithms, if not specified, mt, vt, m̂t, v̂t and the updating rule are the same with
Adam, or AdamW with decoupled weight decay.

3.2.1 Minute Modification

AdamW (Loshchilov & Hutter, 2019) θt+1 = θt − η( m̂t√
v̂t+ϵ

+ λθt), where λ is called decoupled
weight decay (hyper-parameter). And The decoupled weight decay can be applied to the algorithms
below.

AMSgrad (Reddi et al., 2018) ṽt = max(ṽt−1, vt), v̂t = ṽt
1−βt2

.

AdaMax (Loshchilov & Hutter, 2019) ut = max(β2ut−1, |gt|), θt+1 = θt − η m̂t

ut
.

Yogi (Zaheer et al., 2018) vt = vt−1 − (1− β2)sign(vt−1 − g2t )g
2
t .

AdaFom (Chen et al., 2018) vt = (1− 1/t)vt−1 + (1/t)g2t , θt+1 = θt − η mt√
vt

.

AdamX (Tran et al., 2019) m̂t = mt, v̂t = max{ (1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt}.

ADOPT (Taniguchi et al., 2024) mt = β1mt−1 + (1− β1)
gt

max
√
vt,ϵ

, θt+1 = θt − ηmt.

NAdam (Dozat, 2016) θt+1 = θt − η 1√
v̂t+ϵ

(β1m̂t +
1−β1

1−βt1
gt), by taking ψ = 0 in formula below
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• In PyTorch implementation, θt+1 = θt − η 1√
v̂t+ϵ

(µt+1
mt

1−Πt+1
i=1µi

+ (1−µt)
1−Πti=1µi

gt), where

µt = β1(1− 0.96tψ

2 ).

Padam (Chen & Gu, 2018) ṽt = max(ṽt−1, vt), θt+1 = θt − ηt
mt

ṽpt
. And the output is chosen from

{θt} with P (θout = θt) =
ηt−1∑T−1
i=1 ηi

.

RAdam (Liu et al., 2020a) ρ∞ = 2
1−β2

− 1, ρt = ρ∞ − 2tβt2
1−βt2

. If ρt > 4, lt =
√
(1− βt

2)/vt,

rt =
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

, θt+1 = θt − ηrtm̂tlt; otherwise θt+1 = θt − ηm̂t.

Adam+ (Liu et al., 2020b) ηt = αβγ

max(||zt||1/2,ϵ0)
, θt+1 = θt − ηzt, zt+1 = (1− β)zt + β∇θJ((1−

1
β )θt +

1
β θt+1), where I replace a in the original papar with γ for clarity

AdaX (Li et al., 2020) vt = (1 + β2)vt−1 + β2g
2
t , v̂t = vt

(1+β2)t−1

AdaBelief (Zhuang et al., 2020) vt = β2vt−1 + (1− β2)(gt −mt)
2 + ϵ

AdamP (Heo et al., 2021) pt = mt√
vt+ϵ . If cos(θt, gt) < δ/

√
dim(θt), qt = pt − (θt·pt)θt

||θt||22
, else

qt = pt. θt+1 = θt − ηqt.

• SGDP Similar to AdamP, but pt = βpt−1 + gt.

AdamWN (Loshchilov, 2023) θ̂t = θt − η m̂t√
v̂t+ϵ

, θt+1 = θ̂t − kt(1− rt∥θ0∥
∥θ̂t∥

)θ̂t, kt ∈ [0, 1], rt∥θ0∥
is the target weight norm for θt.

C-AdamW (Liang et al., 2024) ut = m̂t√
v̂t+ϵ

, ϕt = 1ut⊙gt≥0, η̄t = η d
∥ϕt∥0+1 , θt+1 = θt − η̄t(ϕt ◦

ut + λθt).

CAdam (Wang et al., 2024) θt+1 = θt − η m̂t√
v̂t+ϵ

⊙ 1mt⊙gt>0.

AdaReg (Gupta et al., 2017) rt = rt−1 + gtg
⊤
t , Ht = argminH{Tr(r⊤t H) + Φ(H)}, θt+1 =

θt −Htgt.

• Φ(H) = Tr(H−1) (Ht = (
∑t

s=1 gsg
⊤
s )

−1/2) for AdaGrad (Duchi et al., 2011);

• Φ(H) = − log |H| (Ht = (
∑t

s=1 gsg
⊤
s )

−1) for ONS (Hazan et al., 2007).

ASGO (An et al., 2025) For 2-dimension θt, gt, rt = rt−1 + gtg
⊤
t , Λt = r

1/2
t + ϵIm, θt+1 =

θt − ηΛ−1
t gt.

• DASGO For 2-dimension θt, gt, vt = β2vt−1+(1−β2)diag(g⊤t gt), θt+1 = θt−η mt√
vt+ϵ

.

AdamPower Use powered gradient (Wang et al., 2025b) g̃t = |gt|psign(gt) to replace the gradient
in AdamW.

MGUP-AdamW (Da Chang134) ηt = η

√
1−βt2

1−βt1
, ut = mt√

vt+ϵ , ϕt = MGUP(ut ⊙ gt), θt+1 =

θt − ηt(ϕt ⊙ ut + λθt), where MGUP outputs ϕt,i = 1/τ for i ∈ ItopK with ItopK as the index set
of the largest K elements of ut · gt with K = ⌊τ · d⌋, otherwise ϕt,i = τ .

3.2.2 Clipping Involved

AdaBound (Luo et al., 2019) ηt = Clip(α/
√

diag(vt), ηl, ηu)/
√
t, where, ηl and ηu are lower

bound and upper bound of learning rates, θt+1 = θt − ηtmt.

Adai (Xie et al., 2022) v̄t = mean(v̂t), β1,t = Clip(1 − β0

v̄t
v̂t, 0, 1 − ϵ), m̂t =

mt

1−Πts=1β1,t
, θt+1 =

θt − ηm̂t.

LARS (You et al., 2017) mt = β1mt−1 + (1 − β1)(gt + λθt), θt+1 = θt − η Clip(||θt||,γl,γu)
||θt||+ϵ mt,

where Clip(x, γl, γu) = min(max(x, γl), γu), γl is default to 0 if only 1 bound given

5



LAMB (You et al., 2020) rt = m̂t√
v̂t+ϵ

, θt+1 = θt − η Clip(||θt||,γl,γu)
||rt+λθt||+ϵ (rt + λθt)

ACClip (Zhang et al., 2020) mt = β1mt−1 + (1 − β1)gt, vαt = β2v
α
t + (1 − β2)|gt|α, θt =

θt−1 − ηmt ·min{ vt
|mt|+ϵ , 1}.

AM-MSGD βt = Clip( (λ+1)g⊤
t dt−⟨dt−gt,gt+λdt⟩

∥dt−gt∥2
2

, 0, βmax,t), dt+1 = βt+λ
1+λ dt +

1−βt
1+λ gt, θt+1 =

θt − ηdt+1.

3.2.3 More EMA Involved

Prodigy (Bernstein & Newhouse, 2024)mt = β1mt−1+(1−β1)ηtgt, vt = β2vt−1+(1−β2)η2t g2t ,
rt =

√
β2rt−1+(1−

√
β2)η

2
t g

⊤
t (θ0−θt), st =

√
β2st−1+(1−

√
β2)η

2
t gt, ηt+1 = max(ηt,

rt
∥st∥1

),
θt+1 = θt − ηt

mt√
vt

Adan (Xie et al., 2024) vt = (1 − β2)vt−1 + β2(gt − gt−1), nt = (1 − β3)nt−1 + β3[gt + (1 −
β2)(gt − gt−1)]

2, θt = 1
1+λη [θ −

η√
nt+ϵ ◦ (mt + (1− β2)vt)]

AdEMAMix (Pagliardini et al., 2024) rt = β3rt−1 +(1− β3)gt, θt = θt−1 − η( m̂t+αtrt√
v̂t+ϵ

+λθt−1)

3.2.4 More complicated Design

Adafactor (Shazeer & Stern, 2018) ut = gt√
v̂t

, ût = ut
max(1,RMS(ut)/d)

, θt+1 = θt − ηtût, where
αt = η ·max(ϵ2,RMS(θt)), β2,t = 1− tτ , and

• For weight vector θt ∈ Rn, v̂t = β2,tv̂t−1 + (1− β2,t)(g
2
t + ϵ11n);

• For weight matrix θt ∈ Rm×n, rt = β2,trt−1+(1−β2,t)(g2t+ϵ11m1⊤n )1n, vt = β2,tvt−1+
(1− β2,t)1

⊤
m(g2t + ϵ11m1⊤n ), v̂t = rtvt/1

⊤
mrt.

Amos (Tian & Parikh, 2022) ct = (1 + 1
4

√
ηbt)

−1/2, dt = (1 + 1
4

√
ηη̃bt)

−1, with η̃ the expected
scale for model weights θ, (Optional) g̃t = χ

max(χ,∥gt∥)gt, vt = βvt−1 + (1 − β)M2(g̃t)
2, where

M2(a) :=
√

1
k

∑k
i=1 a

2
i is the quadratic mean of the entries. v̂t = vt

1−βt , γt = ct
η2

v̂t
M2(gt)

2,

δt = dt(
ηη̃√
v̂t
gt +

γt
2 θt). bt+1 = bt + γt(1 + bt), (Optional) δ̃t = mt+1 = µmt + (1 − µ)δt,

θt+1 = θt − δ̃t

4 Sign of Gradient

RProp (Riedmiller & Braun, 1993) for 0 < η− < 1 < η+,

• If gt · gt−1 > 0, ηt = min(η+ηt−1, ηmax), θt+1 = θt − ηtSign(gt)
• If gt · gt−1 < 0, ηt = max(η−ηt−1, ηmin), θt+1 = θt −∆θt, where ∆θt = θt − θt−1

• Otherwise ηt = 1, θt+1 = θt − ηtSign(gt)

SignSGD (Bernstein et al., 2018) θt+1 = θt − ηSign(gt).

Signum (Bernstein et al., 2018) mt = βmt−1 + (1− β)gt ,θt+1 = θt − ηSign(mt).

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) ϵ̂t = ρ Sign(gt)|gt|q−1/||gt||q/pq ,
θt+1 = θt − η∇θJ(θt + ϵ̂t).

ASAM (Kwon et al., 2021) θt+1 = θt−α(∇θJ(θt+ρ
T 2
θt

gt

||T 2
θt

gt||2 )+λθt)
†, where Tθ is some invertible

linear operator such as Tθ = diag(|θ|).

LookSAM (Liu et al., 2022) If t mod k = 0, ḡt = ∇θJ(θ+ ρgt/||gt||), g̃t = ḡt − ||ḡt|| (gt·ḡt)gt
||gt||2||ḡt|| ;

else ḡt = gt + α ||gt||
||g̃t−1|| g̃t−1, g̃t = g̃t−1. θt+1 = θt − ηḡt.

Lion (Chen et al., 2023) ct = β1mt−1 + (1 − β1)gt, mt = β2mt−1 + (1 − β2)gt, θt+1 = θt −
η(Sign(ct) + λθt)
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• Tiger (Su, 2023) (A special case of Lion when β1 = β2 = β) mt = βmt−1 + (1 − β)gt,
θt+1 = θt−η(Sign(mt)+λθt). For bias and normalization parameters, ηi = 0.5η, λ = 0,
otherwise ηi = η ×RMS(θt,i), λ = Constant> 0

Grams (Cao et al., 2024) (Based on AdamW) θt+1 = θt − η(Sign(gt) ◦ | m̂t√
v̂t+ϵ

|+ λθt)

5 Preconditioned Optimizers and Second-Order Methods

Preconditioned approaches usually use a preconditioner Ht to adjust the updates by involving the
inter-dependencies among model parameters. According to the Newton’s Method,

θt+1 = θt − (∇2
θtJ(θ))

−1∇θtJ(θt) = θt −H−1
t gt.

Therefore, a direct motivation for preconditioned approaches is to directly involve or approximate
the second-order information in optimization process. However, direct computation needs O(n2)
time, therefore, adequate approximation or estimation is needed.

5.1 Diagonalized Hessian Matrices

Usually, diagonalized Hessian matrices and updates are expected. Becker (1988) first use diagonal
Hessian as the pre-conditioner by ignoring off-diagonal entries:

θt+1 = θt − η
gt

|diagonal(Ht)|+ ϵ
,

where we use “diagonal” to indicate taking diagonal entries instead of forming diagonal matrix with
entries from another vector (denoted as “diag”).

vSGD-l (Schaul et al., 2013) mt = (1 − τ−1
t )mt−1 + τ−1

t gt, vt = (1 − τ−1
t )vt−1 + τ−1

t g2t ,
ht = (1− τ−1

t )ht−1 + τ−1
t |diagonal(Ht)|, ηt = m2

t

htvt
, τt+1 = (1− m2

t

vt
)τt + 1, θt+1 = θt − ηtgt.

vSGD-g, same as vSGD-l, but ηt =
∑
i(mt)

2
i

h̄tmaxi(ht)i
.

5.2 Hutchinson’s Method for Hessian Estimation

To estimate Ht, Hutchinson’s method (Hutchinson, 1989) can be used: z ∼ Rademacher(0.5),
∂g⊤z
∂θ = ∂g⊤

∂θ z + g⊤ ∂z
∂θ = ∂g⊤

∂θ z = Htz, D = diag(H) = E[z ⊙ (Hz)].

AdaHessian (Yao et al., 2021) (Based on Adam) vt = β2vt−1+(1−β2)D2
t , θt+1 = θt−η m̂t

(
√
v̂t)k+ϵ

,
where k is the Hessian power.

Sophia (Liu et al., 2024b) mt = β1mt−1 +(1− β1)gt, if t mod k = 1 for the size of the step group
k, ht = β2ht−k +(1−β2)ĥt, where ĥt is calculated using one of the following Hessian estimators:

• Hutchinson: Draw u ∼ N (0, Id), ĥt = u⊙∇(⟨gt, u⟩);
• Gauss-Newton-Bartlett: Compute logits on mini-batch {l(θt, ξt,b)}Bb=1, sample ŷt,b ∼

Softmax(l(θt, ξt,b)),∀b ∈ [B]. ĝ = 1
B∇L(l(θt, ξt,b), ŷt,b) with loss function l, ĥ =

B · ĝ ⊙ ĝ,

Otherwise, ht = ht−1. θt+1 = θt − η(Clip( mt

max{γht,ϵ} , 1)− λθt).

OASIS (Jahani et al.) vt = β2vt−1 + (1− β2)D
2
t , v̂t = max{vt, α} for a positive truncation value

α; ηt = min{
√
1 + St−1ηt−1,

||θt−θt−1||v̂t
2||gt−gt−1||∗v̂t

}, where S0 = +∞, θt+1 = θt − ηt
gt
v̂t

, St =
ηt

ηt−1
.

5.3 Fisher Information Matrix

Another way to estimate Hessian matrix is to compute Fisher information matrix (proposed by
Amari (1998) and H-FAC (Martens & Grosse, 2015)), since v̂t is an approximation to the diag-
onal of Fisher information matrix (Pascanu & Bengio, 2014):

F = E[
d log p(y|x, θ)

dθ

(d log p(y|x, θ)
dθ

)⊤
] = E[DθDθ⊤].
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Natural Gradient Descent (NGD) (Amari, 1998) θt+1 = θt − 1
λF

−1gt.

5.4 SVD Approximation

Sometimes, to approximate Hessian matrix, SVD is utilized. To approximate this process, they
developed Newton-Schulz iteration (Higham, 2008) methods for computing UV ⊤ for g = UΣV ⊤,
by setting X0 = g/∥g∥l2→l2 or X0 = g/∥g∥F , where ∥M∥α→β := maxx

∥Mx∥β
∥x∥α is the induced

operator norm. Then UV ⊤ can be approximated by several iteration of Xt+1 = 3
2Xt − 1

2XtX
⊤
t Xt.

• Usually, NewtonSchulz5 is often utilized by applying Newton-Schulz methods for
5 iterations with Xt+1 = aXt + bXtX

⊤
t Xt + c(XtX

⊤
t )2Xt for (a, b, c) =

(3.4445,−4, 7750, 2.0315).
• Polar Express (Amsel et al., 2025) (For 5 steps):

(ai, bi, ci) = [(8.28721201814563,−23.595886519098837, 17.300387312530933),

(4.107059111542203,−2.9478499167379106, 0.5448431082926601),

(3.9486908534822946,−2.908902115962949, 0.5518191394370137),

(3.3184196573706015,−2.488488024314874, 0.51004894012372),

(2.300652019954817,−1.6689039845747493, 0.4188073119525673)].

K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) For one layer of neural network ul =
θlhl−1 + bl,hl = ϕ(ul), for Gl = ∇ulJ(θl), K-FAC updates θl by Ll,t = Ll,t−1 + GlG

⊤
l ,

Rl,t = Rl,t−1 + hl−1h
⊤
l−1, θl,t+1 = θl,t − ηL−1

l,t gtR
−1
l,t .

FOOF (Benzing, 2022) Similar to K-FAC, but Σl,t = βΣl,t−1 + (1 − β)GlG
⊤
l , Ll,t = Ll,t−1

(except for every T steps, Ll,t = Σl,t + ϵI), θl,t+1 = θl,t − ηL−1
l,t gt.

Shampoo (Gupta et al., 2018) Lt = Lt−1+gtg
⊤
t ,Rt = Rt−1+g

⊤
t gt, θt+1 = θt−ηL−1/4

t gtR
−1/4
t .

• Proposed by Bernstein & Newhouse (2024), ∆θ = −η(gg⊤)−1/4g(g⊤g)−1/4 =
−ηUV ⊤, where g = UΣV ⊤ is the SVD decomposition of the gradient.

CASPR (Duvvuri et al., 2024) (Only for 2D parameters θt ∈ Rm×n) Lt = Lt−1 + gtg
⊤
t , Rt =

Rt−1 + g⊤t gt, L̃
−1/4
t = (Lt + ϵIm)−1/4, R̃−1/4

t = (Rt + ϵIn)
−1/4, Ut = L̃

−1/4
t gt + gtR̃

−1/4
t ,

θt+1 = θt − η(L̃
−1/4
t Ut + UtR̃

−1/4
t ).

Muon (Jordan et al., 2024) (Only for 2D parameters θt ∈ Rm×n) Mt = µMt−1 + gt, Ot =
NewtonSchulz5(Mt), θt+1 = θt − ηOt. (In practice, µMt + gt is used in NewtonSchulze5 instead
of Mt.)

• Moonlight (Liu et al., 2025a) θt+1 = θt − η(0.2
√

max(m,n)Ot + λθt)

AdaMuon (Si et al., 2025) (Based on Muon) vt = µvt−1 + (1− µ)Ot ⊙Ot, Ôt =
Ot√
vt+ϵ , θt+1 =

θt − η( 0.2
√
mn

||Ôt||F
Ôt + λθt).

PolarGrad (Lau et al., 2025) UtHt = polar(gt), θt+1 = θt − η tr(Ht)Ut.

• Polar Decomposition: For any matrix M ∈ Rm×n, it has a polar decomposition A = UpH
(ifm ≥ n) orA = HUp (ifm < n) for semi-orthogonal matrixUp ∈ Rm×n and Hermitian
matrix H ∈ Sn+ (if m ≥ n) or Sm+ (if m < n). For UΣV ⊤ = SVD(A), Up = UV ⊤,
H = V ΣV ⊤ (if m ≥ n) or H = UΣU⊤ (if m < n).

• PolarMuon: mt = βmt−1+(1−β)gt, UtHt = polar(mt), θt+1 = θt−η(tr(Ht)Ut+λθt).
• Polar-first: UtHt = polar(gt),mt = βmt−1+(1−β)Ut, θt+1 = θt−η(tr(Ht)mt+λθt).

AdaDiag (Nguyen et al., 2025) (Only for 2D parameters θ ∈ Rm×n)) If t mod T = 0, Pt,,Q
⊤
t =

SV D(gt) else Pt, Q
⊤
t = Pt−1, Q

⊤
t−1. g̃t = P⊤

t gt, mt = β1mt−1+(1−β1)g̃t, vt = β2vt−1+(1−
β2)g̃

2
t , θt+1 = θt − ηt(Pt

mt√
vt+ϵ + λθt)
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• AdaDiag++: similarly but g̃t = P⊤
t gtQt, θt+1 = θt − ηt(Pt

mt√
vt+ϵQ

⊤
t + λθt)

COSMOS (Liu et al., 2025b) (Only for 2D parameters θ ∈ Rm×n)): mt = β1mt−1 +
(1 − β1)gt, ut = QR(β2ut−1st−1 + (1 − β2)g

⊤
t gtut−1), st = u⊤t (β2ut−1st−1u

⊤
t−1 + (1 −

β2)g
⊤
t gt)ut, vt = β2vt−1 + (1 − β2)(gtut) ⊙ (gtut), at = (

mtut/(1−βt1)√
(vt+ϵ)/(1−βt2)

)u⊤t , bt =

Norm(NewtonSchulz5( mt−mtutu
⊤
t

||mt−mtutu⊤
t ||F

)), θt+1 = θt − ηNorm(at + γbt
√
m), where Norm(X) =

√
nX

||X||F .

Dion (Ahn et al., 2025) (Centralized version. Only for 2D parameters θ ∈ Rm×n) Bt = mt−1 + gt.
Then do Power Iteration for 1 iteration: Pt = Orthogonalize(BtQt−1) (orthogonalize Pt using
Cholesky decomposition), Rt = B⊤

t Pt. mt = Bt − (1 − µ)PtR
⊤
t , Qt = ColumnNormalize(Rt)

(Normalize each column of Rt), θt = θt−1 − η
√
m/nPtQ

⊤
t .

MARS-M (Liu et al., 2025c) (Only for 2D parameters θ ∈ Rm×n) ct = gt + γt
β1

1−β1
(gt −

∇f(θt−1, ξt)), c̃t = Clip(ct, 1), mt = β1mt−1 + (1 − β1)c̃t, Ot = NewtonSchulz5(mt),
θt+1 = θt − ηt(0.2

√
max(m,n)Ot + λθt).

NorMuon (Li et al., 2025) (Only for 2D parameters θ ∈ Rm×n) mt = β1mt−1 + (1 − β1)gt.
Ot = NewtonSchulze5(mt), vt = β2vt−1 + (1 − β2)meancol(Ot · Ot), Vt = ExpandRoows(vt),
Ôt = Ot/(

√
V t + ϵ), θt+1 = θt − η(λθt + 0.2

√
mnÔt/∥Ôt∥F .

MuonAdam (Crawshaw et al., 2025) For 2D factors mt = β1mt−1 + (1 − β1)gt, θt+1 = θt −
ηmPolar(mt) with polar decomposition. For 1D parameters, use Adam(W) with different learning
rate.

Conda (Wang et al., 2025a) (Column-Normalized Adam) (Only for 2D parameters θ ∈ Rm×n,
assume m ≤ n) mt = β1mt−1 + (1− β1)gt. If t mod T = 0, Ut,Σt, V

⊤
t = SVD(mt), Ūt = Ut;

else Ūt = Ūt−1. m′
t = Ū⊤

t mt, nt = β2Vt−1 + (1− β2)(Ū
⊤
t gt)

2, θt+1 = θt + ηŪt
m′
t√

nt+ϵ
1−β2

1−β1
.

SSO (Xie et al., 2026) (Only for 2D parameters θ ∈ Rm×n) mt = βmt−1 + (1 − β)gt, m̂t =
mt/∥mt∥F . (σt, ut, vt) = PowerIteration(θt) (to get the top singular value and vectors), Θt =

utv
⊤
t . DefineR =

√
dout/din as µP scaler. λ∗t = argminλ⟨Θt,msign(m̂t+λΘt)⟩ (using Bisection

search with tolerance ϵ). θt+1 = θt ·R/σt − ηR · msign.(m̂t + λ∗tΘt)

5.5 Miscellaneous

BFGS (Broyden–Fletcher–Goldfarb–Shanno) (Fletcher, 1987) dt = −Htgt, αt =

argminα f(θ − αdt), θt+1 = θt + αtdt, Ht+1 = (I − styt
y⊤
t st

)⊤Ht(I − yts
⊤
t

y⊤
t st

) +
sts

⊤
t

y⊤
t st

, where
st = θt+1 − θt, yt = gt+1 − gt.

L-BFGS (Liu & Nocedal, 1989) Based on BFGS, but choose αt satisfying Wolfe conditions (try
αt = 1 first): f(θt + αtdt) ≤ f(θt) + β′αtg

⊤
t dt. Moreover, for m̂ = min{t,m− 1},

Ht+1 = (

t−m̂∏
i=t,inv

V ⊤
i )H0(

t∏
i=t−m̂

Vi) +

t∑
j=t−m̂

ρj(

j+1∏
i=t,inv

V ⊤
i )sjs

⊤
j (

t∏
i=j+1

Vi),

where
∏t′

i=t,inv denotes the product of matrices with indices from t to t′ < t, and ρt = 1/(y⊤t st).

SOAP (Vyas et al., 2024) (Only for 2D parameters) g′t = Q⊤
LgQR, mt = β1mt−1 + (1 − β1)gt,

m′
t = Q⊤

LmtQR, vt = β2vt−1 + (1 − β2)(g
′
t)

2, θt+1 = θt − ηQL
m̂′
t√

v̂t+ϵ
Q⊤

R, where m̂′
t =

m′
t

1−βt1
,

v̂t =
vt

1−βt2
. Lt = β2Lt−1 + (1− β2)gg

⊤, Rt = β2Rt−1 + (1− β2)g
⊤g. For every k steps, obtain

QL =QR-Eigenvectors(LQL), QR =QR-Eigenvectors(RQR), where QR-Eigenvectors returns the
eigenvector matrix of the QR decomposition for the input matrix.

Hessian-free (Martens et al., 2010) Define the function Bn(d) = H(θt)d + λd, where H(θt)d =

limϵ→0
∇f(θt+ϵd)−gt

ϵ . pt = CG-Minimize(Bt,−gt), where CG-Minimize is the linear conjugate
gradient algorithm, θt+1 = θt + pt. λ can be adjusted by Levenberg-Marquardt style heuristic:
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for ρt = f(θt+p)−f(θt)
qθt (p)−qθt (0)

with qθt(·) the minimization objective of CG, if ρt < 1
4 , λ → 3

2λ, else if

ρt >
3
4 , λ→ 2

3λ, otherwise keep λ unchanged.

6 Variance Reduction
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Figure 3: A brief history of variance reduction optimization methods. Some optimizers are omitted.

Since adaptive gradient methods may have risks of high stochastic gradient variance, some re-
searchers consider variance reduction techniques to address this challenge. The core idea, first
proposed by Johnson & Zhang (2013), is as follows:

mt = ∇f(θt, ξt)−∇f(θ̃t, ξt) +∇F (x̃),

where x̃ is some reference point (anchoring point) that is periodically updated. By differentiating
the gradient for different points on the same data point, the variance in optimization can be reduced
significantly.

SAG (Roux et al., 2012) θt+1 = θt − η
n

∑n
i=1 yi,t, where at each t, one ξit is chosen and yi,t =

∇f(θt, ξi,t) and for other samples, keep y·,t unchanged.

SDCA (Shalev-Shwartz & Zhang, 2013) (For machine learning task L(θ) = 1
n

∑n
i=1 ϕi(θ

⊤ξi) +
λ
2 ∥θ∥

2 with scalar convex function ϕi), for ξt = ξi, ∆αt = argmax∆α −ϕ∗i (−(αt−1+∆α), ξt)−
λn
2 ∥θt−1 +

1
λnξt∆α∥

2, αt = αt−1 +∆αtei, θt = θt−1 + (λn)−1ξt∆αt. Output 1
T

∑T
i=1 θt−1 or

randomly chosen from {θt}Tt=1.

SAGA (Defazio et al., 2014) Keep a n× d matrix ϕ = {∇f(θ0, ξi)}ni=1 storing the parameters, for
ξt = ξj , θt+1 = argminθ{h(θ) + 1

2γ ∥θ− (θt − γ[∇f(θt, ξt)− ϕj +
1
n

∑n
i=1 ϕi])∥2}, where h(θ)

is the regularization function, then update ϕj = θt and keep other ϕi unchanged.

SVRG (Johnson & Zhang, 2013) For each epoch s, calculate the full gradient gs for θs. For each
iteration t, θs,t+1 = θs,t − η(∇f(θs,t, ξs,t)−∇f(θs, ξs,t)+ gs), set θs = θs,T or randomly chosen
from {θs,t}Tt=1

• α-SVRG (Yin et al., 2025) θs,t+1 = θs,t − η(αt(∇f(θs,t, ξs,t) − ∇f(θs, ξs,t)) + gs),
where αt =

Cov(∇f(θs,ξs,t),∇f(θs,t,ξs,t))
Var(∇f(θs,ξs,t))

.
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SARAH (Nguyen et al., 2017) For each epoch s, calculate the full gradient vs,0 = gs for θs, θs,1 =
θs,0−ηvs,0. For each iteration t, vs,t = ∇f(θs,t, ξs,t)−∇f(θs, ξs,t)+vs,t−1, θs,t+1 = θs,t−ηvs,t,
set θs randomly chosen from {θs,t}Tt=1.

Hybrid-SGD (Tran-Dinh et al., 2019) (Hybrid SGD with SARAH) mt = β(mt−1 + gt −
∇f(θt−1, ξt)) + (1− β)gt, θt+1 = θt − ηmt

SPIDER-SFO (Fang et al., 2018) vt = gt for every q steps with batch size S1, otherwise vt =
gt −∇f(θt−1, ξt) + vt−1. Update parameters with Option I: θt+1 = θt − ηvt/∥vt∥ until ∥vt∥ less
than some threshold, or Option II: θt+1 = θt − ηtvt with ηt = min(η/∥vt∥, η/(2ϵ)). Output θT or
randomly choose from {θt}Tt=1.

SpiderBoost (Wang et al., 2019) vt = gt −∇f(θt−1, ξt) + vt−1, θt+1 = θt − ηvt/∥vt∥
AdaSpider (Kavis et al., 2022) If t mod n = 0, vt = gt, else vt = gt − ∇f(θt−1, ξt) + vt−1.

γt = 1/
(
n1/4β0

√
n1/2G2

0 +
∑t

s=0 ||vs||2
)

, θt+1 = θt − γtvt.

SNVRG (Zhou et al., 2020b) For loop parameters {Tl}, set T =
∏K

l=1 Tl or T ∼ Geom(1/(1 +∏K
l=1 Tl)) as the total number of steps. For each step t, rt = min{j : 0 = (t mod

∏K
l=j+1 Tl), 0 ≤

j ≤ K}. For 0 ≤ l ≤ rt − 1, θlt = θlt−1; otherwise θlt = θt. For 0 ≤ l ≤ rt − 1, glt = glt−1;
for rt + 1 ≤ l ≤ K, glt = 0. Then uniformly generate index set It with size Brt , if rt > 0,
grtt = 1

Brt

∑
i∈It

[∇f(θrtt , ξi)−∇f(θrt−1
t , ξi)], otherwise g0t = 1

B0

∑
i∈It

∇f(θ0t , ξi). And θt+1 =

θt − η
∑K

l=0 g
l
t. The output parameter is randomly chosen from {θt}Tt=1.

STORM+ (Levy et al., 2021) (Based on STORM) at+1 = 1
(1+

∑t
i=1 ∥gi∥2)2/3

, ηt =
1

(
∑t
i=1 ∥di∥2/ai+1)1/3

Super-Adam (Huang et al., 2021) (Based on Adam) ct = αtgt + (1 − αt)[ct−1 + τ(gt −
∇f(θt−1, ξt))], τ ∈ {0, 1}, θ̃t = argminθ{η ⟨ct, θ⟩ + 1

2 ||θ − θt||2Ht
}, θt+1 = (1 − µt)θt + µtθ̃t,

where Ht is defined by one of the following cases:

• Case 1: Ht = diag(
√
vt + λ)

• Case 2: vt = βvt−1 + (1− β)∥gt∥, Ht = (vt + λ)Id

• Case 3 (Barzilai-Borwein technique): bt =
∥⟨gt−∇f(θt−1,ξt),θt−θt−1⟩∥

∥θt−θt−1∥ , Ht = (bt + λ)Id

• Case 4-1: vt = β2vt−1 + (1− β2)(gt −mt)
2, Ht = diag(

√
vt + λ)

• Case 4-2: vt = β2vt−1 + (1− β2)∥gt −mt∥, Ht = (vt + λ)Id

ROOT-SGD (Li et al., 2022) vt = gt +
t−1
t (vt−1 −∇f(θt−1, ξt)), θt+1 = θt − ηvt

AdaSVRPS/AdaSVRLS (Jiang & Stich, 2024) Fξt(θ) = f(θ, ξt)+w⊤(∇f(wt)−∇f(wt, ξt))+
µF
2 ∥θ− θt∥2, θt+1 = θt − ηt∇θFξt(θt). With probability pt+1, wt+1 = θt, otherwise wt+1 = wt.

Output 1
T

∑T
t=0 θt. Here

• ηt = min{ Fξt (θt)−F∗
ξt

cp∥∇Fξt (θt)∥2
√∑t

s=0 Fξs (θs)−F∗
ξs

, ηt−1} for AdaSVRPS

• ηt = min{γt 1

cl
√∑t

s=0 γs∥∇Fξs (θs)∥2
, ηt−1} for AdaSVRLS, where γt can be obtained by

Armijo Backtracking line-search (Armijo, 1966; Nocedal & Wright, 2006): do γ = βγ
until f(θt − γ∇f(θt, ξt), ξt) ≤ f(θt, ξt)− ργ∥∇f(θt, ξt)∥2

• For AdaSPS and AdaSLS, just set Fξt(θ) = f(θ, ξt) and set F ∗
ξt

as a predefined lower
bound.

VRAdam (Li et al., 2023) (Based on Adam)mt = β1mt−1+(1−β1)(gt+ β1

1−β1
(gt−∇f(θt−1, ξt)),

θt+1 = θt − η mt√
v̂t+ϵ
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MARS (Yuan et al., 2025) (Based on AdamW/Lion/Shampoo) ct = gt+γt
β1

1−β1
(gt−∇f(θt−1, ξt)),

c̃t = Clip(ct, 1), mt = β1mt−1 + (1 − β1)c̃t, θt+1 = argminθ{η ⟨mt, θ⟩ + 1
2∥θ − θt∥2Ht

}, or
θt+1 = argminθ{η ⟨mt, θ⟩+ 1

2∥θ − (1− ηλ)θt∥2Ht
} with weight decay.

• MARS-AdamW: vt = β2vt−1 + (1 − β2)c̃
2
t , Ht :=

√
diag(vt) · 1−βt1√

1−βt2
, (equivalently,

θt+1 = θt − η( m̂t√
v̂t+ϵ

+ λθt))

• MARS-Lion: Ht =
√

diag(m2
t ), (equivalently, θt+1 = θt − η(Sign(mt) + λθt))

• MARS-Shampoo: Ht = (
∑t

τ=1 gτg
⊤
τ )

1/4⊗ (
∑t

τ=1 g
⊤
τ gτ )

1/4, (equivalently, Ut,Σt, Vt =
SVD(mt) θt+1 = θt − η(UtV

⊤
t + λθt)), and use Newton-Schulz iteration methods to

approximate SVD decomposition (See Section 5.4 for detail).

• MARS-Approximate: ct = gt + γt
β1

1−β1
(gt − gt−1).

• MVR1 (Chang et al., 2025) θt+1 = θt − ηtOt, where Ot ∈ argminO ∥O − mt∥F such
that O⊤O = In. And MVR2 is the approximate version of MVR1.

7 Other Topics

7.1 Scheduler-Free Methods

Schedule-Free AdamW (Defazio et al., 2024)

• (Form 1) yt = (1 − β1)zt + β1θt, gt = ∇θJ(yt), ηt = η
√
1− βt

2 min(1, t/Twarmup),

zt+1 = zt − ηt(
gt√
vt+ϵ + λyt), θt+1 = (1− ct+1)θt + ct+1zt+1, where ct+1 =

η2
t∑t

i=1 η2
i

• (Form 2) ηt = η
√

1− βt
2 min(1, t/Twarmup), gt = ∇θJ(yt), ∆t = ηt(

gt√
vt+ϵ + λyt),

yt+1 = yt+
β1ct+1

1−β1
(yt−θt)− [β1ct+1+(1−β1)]∆t, θt+1 = θt+

ct+1

1−β1
(yt−θt)−ct+1∆t,

where ct+1 =
η2
t∑t

i=1 η2
i

D-Adaptation (Defazio & Mishchenko, 2023)

• Dual Averaging: mt = mt−1 + dt−1gt, ηt = 1√∑k
i=0 ∥gi∥2

. For d̂t, option I: d̂t =

ηt∥mt∥2−
∑t−1
i=0 ηid

2
i ∥gi+1∥2

2∥mt∥ or option II: d̂t =
∑t−1
i=0 diηi⟨gi+1,mi⟩

∥mt∥ , dt = max(dt−1, d̂t),

θt+1 = θt − ηtmt. Output 1∑T−1
t=0 dt

∑T
t=1 dt−1θt

• Gradient Descent: ηt =
dt−1√

G2+
∑t
i=0 ∥gi∥2

,mt = mt−1+ηtgt, d̂t =
∥mt∥2−

∑t
i=0 η2

i ∥gi+1∥2

2∥mt∥ ,

dt = max(dt−1, d̂t), θt+1 = θt − ηtmt. Output 1∑T
t=0 ηt

∑T
t=0 ηtθt

• AdaGrad: mt = mt−1 + dt−1gt, a2t = a2t−1 + g2t , At = diag(at), d̂t =
∥mt∥2

A
−1
t

−
∑t−1
i=0 d2

i ∥gi+1∥2

A
−1
i

2∥mt∥1
, dt = max(dt−1, d̂t), θt+1 = θt − A−1

t mt. Output
1∑T−1

t=0 dt

∑T
t=1 dt−1θt

• SGD: ηk = ηdk−1/G, mt = mt−1 + ηtgt, zt = zt−1 − ηtgt, θt+1 = βθt + (1 − β)zt,

d̂t =
2
∑t−1
i=0 ηi+1⟨gi+1,mi⟩

∥mt∥ , dt = max(dt−1, d̂t).

• Adam version (Based on Adam)mt = β1mt−1+(1−β1)ηdt−1gt, θt+1 = θt− mt√
vt+ϵ , st =√

β2st−1+(1−
√
β2)ηdt−1gt, rt =

√
β2rt−1+(1−

√
β2)ηdt−1 ⟨gt, st−1⟩(diag(

√
vt+ϵ))−1 ,

d̂t =
rt

(1−
√
β2)∥st∥1

, dt = max(dt−1, d̂t)

Adam++ (Tao et al., 2024) ηt = max(ηt−1, ∥θt−θ0∥/
√
d), β1,t = β1λ

t−1, mt = β1,tmt−1+(1−
β1,t)gt, θt+1 = θt − ηt · H−1

t mt, where Ht = ϵ + diag(st), and st is calculated by either of the
following ways:
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• Case I: st =
√∑t

i=0 g
2
i

• Case II: vt = β2vt−1 + (1− β2)g
2
t , st =

√
(t+ 1)maxt′≤t(vt′)

AdaGrad++ (Tao et al., 2024) Similar to Adam++, but only choose Case I of st, and λ = 0.

7.2 Randomized Updating

GLD (Gradient Langevin Dynamics) (Durmus & Moulines, 2017; Dalalyan, 2017a,b) θ0 = 0,
ϵt ∼ N(0, Id×d), θt+1 = θt − ηgt +

√
2η/βϵt, where gt is the full gradient.

SGLD (Welling & Teh, 2011) Same as GLD, but gt is the average gradient over samples in small
batch.

SGFS (Ahn et al., 2012) For total number of samples N and batch size B, γ = B+N
B . For small

batch {ξt,i}Bi=1, vt = (1 − β)vt−1 + β 1
n−1

∑B
i=1(∇f(θt, ξt,i) − gt)(∇f(θt, ξt,i) − gt)

⊤, ϵt ∼
N (0, 4Cϵ ), θt+1 = θt + 2(γNvt +

4C
ϵ )−1(gt + ϵt).

SVRG-LD (Xu et al., 2018) For each epoch s, first compute the full gradient gs for θs, g̃s,t =

gs,t − ∇f(gs, ξs,t) + gs, ϵt ∼ N(0, Id×d), θt+1 = θt − ηg̃s,t +
√
2η/βϵt. At the last iteration T

for each epoch, gs = gs,T .

7.3 Reconciliation of Optimizers

AdaGraft (Agarwal et al., 2020) For optimizers M,D, θt,M = M(θt, gt), θt,D = D(θt, gt),
θt+1 = θt +

∥θt,M−θt∥
∥θt,D−θt∥+ϵ · (θt,D − θt)

7.4 Architecture-specific Optimizers

GaLore (Zhao et al., 2024a) (Adam for LLM layer weight matrix): θt ∈ Rm×n, if t mod T = 0
U, S, V = SVD(gt), Pt = U [:, : r] (low-rank projection), otherwise Pt = Pt−1. Then estimate
the low-rank gradient Rt = P⊤

t gt, and use Adam to optimize: θt+1 = θt + ηαPt
mt√
vt+ϵ with scale

factor α

Adam-mini (Zhang et al., 2024) (Based on Adam) (For each parameter in parameter blocks) vt =
β2vt−1 + (1 − β2) ∗ Mean(g ⊙ g). For Transformers, partition the parameters of embedding and
output layers by tokens, partition the parameters of query and key matrices by heads, and partition
the parameters of value matrices, attention projection matrices and MLP layers by output neurons.

Adalayer (Zhao et al., 2024b) (Based on Adam, for language model) For each layer: vt = β2vt−1+
(1− β2)∥gt∥22/

√
p with p the number of parameters in each layer, θt+1 = θt − η mt√

vt+ϵ

AdamC (Based on AdamW) (Only for the layer immediately followed by a normalization operation
including LayerNorm or BatchNorm, otherwise use AdamW): θt+1 = θt − η( m̂t√

v̂t+ϵ
+ η

ηmax
λθt).

(In Transformers, AdamC is applied to every linear layer except the output layer.)

STORM-PG (Yuan et al., 2020) (Based on Reinforce Learning tasks) θt+1 = θt + ηĝt,
ĝt+1 = (1 − γ)g′t + gt, where gt = 1

B

∑
i∈B di(θt+1), g′t = 1

B

∑
i∈B[ĝt − d

θt+1

i (θt)] is
the gradient estimation with different parameters on small batch of trajectories {τi}i∈B with
size B, and di(θ) =

∑H−1
h=0 di,h(θ), dθ

′

i (θ) =
∑H−1

h=0
p(τi,h|θ)
p(τi,h|θ′)di,h(θ), where di,h(θ) =

(
∑h

t=0 ∇ log πθ(at|st))(γhr(sh, ah)− bh).

SPPO (Wu et al., 2024) (Based on Reinforce Learning tasks)

θt+1 = argmin
θ

E(ξt,yt,P̂ (yt≻πt|ξt))
(
log

(πθ(yt|ξt)
πt(yt|ξt)

)
− η(P̂ (yt ≻ πt|ξt)−

1

2
)
)2
,

where πt = πθt is the policy model with the parameter θt.

Muon-clip (QK-Clip) (Moonshot AI, 2025) (Based on Muon, for Attention mechanism) In each
layer, for input {xi}, query and key weight Wq,Wk, Smax = (maxij xiWq) · (xjWk). First
update all parameters using Muon, then if Smax > τ :
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• MHA/MQA/GQA: multiply
√
τ/Smax to Wq,Wk;

• MLA: multiply
√
τ/Smax to Wqc,Wkc and multiply τ/Smax to Wqr.

7.5 Oracle-based Optimization Methods

Linear Minimization Oracle (LMO): For norm-ball D := {x| ||x|| ≤ ρ} for some norm || · ||
(Euclidean norm in default), lmo(s) ∈ argminx∈D⟨s, x⟩: for s ∈ Rdout×din :

• 1→RMS (ColNorm, such as Embedding): colj(s) → −
√
dout

colj(s)
∥colj(s)∥2

;

• 1→ ∞ (Sign): s→ −sign(s);

• RMS→RMS (Spectral, such as Linear module): s → −
√

dout
din
UV ⊤ for U,Σ, V ⊤ =

SVD(s);

• RMS→ ∞ (RowNorm, such as LM Head): rowi(s) = − 1√
din

rowi(s)
∥rowi(s)∥2

Conditional Gradient Method (CG) (Frank et al., 1956; Clarkson, 2010; Jaggi, 2013) θt+1 =
(1− η)θt + η · lmo(gt)

Stochastic Conditional Gradient (SCG) (Pethick et al., 2025) mt = βmt−1 + (1− β)gt, θt+1 =
(1 − η)θt + η · lmo(mt) (θt+1 = θt + η · lmo(mt) for Unconstrained SCG (uSCG)). For different
base optimization method, the LMOs are different:

• Normalized SGD (Hazan et al., 2015) and Momentum Normalized SGD (Cutkosky &
Mehta, 2020): −ρ mt

||mt||2 ;

• SignSGD (Bernstein et al., 2018) and Signum (Bernstein et al., 2018): −ρsign(mt);

• Muon (Jordan et al., 2024) (with non-Nesterov based momentum): −ρUV ⊤ for UΣV ⊤ =
SVD(mt).

Scion (Pethick et al., 2025) mt = βmt−1 + (1 − β)gt, θt+1 = (1 − η)θt + η · lmo||·||α→β
(mt)

(θt+1 = θt + η · lmo||·||α→β
(mt) for unconstrained version), where ||A||α→β = sup||z||α=1 ||Az||β .

Gluon (Riabinin et al., 2025) mt = βmt−1 + (1 − β)gt, θt+1 = argmin||θt+1−θt||≤pt⟨mt, θt⟩ (pt
can be ||gt||

L0+L1||gt|| or L0

(t+1)3/4
.

7.6 Something Beyond Optimizers

In the previous sections, I did not emphasize the changing of the learning rate η. In this section, I
collected some interesting research related to the changing rule of learning rate (Scheduler).

7.6.1 Scheduler

Warmup-Stable-Decay (WSD) Scheduler (Hu et al., 2024) Different from the Cosine Learning
Rate Scheduler, in MiniCPM, the researchers utilized WSD scheduler (linear warmup-stable learn-
ing rate-decay). It is widely used in industry because it can support continual training, and decaying
schedule in the end is also compatible for downstream tasks fine-tuning.

For intermediate checkpoints, WSD performs decay schedule and starts from the state before decay
when continuing training. However, in WSD-S (Wen et al., 2024), the researchers find that the
dispose of training in decay phase is not necessary, and just starts from the state after decay with the
max learning rate is fine.

7.6.2 Schedule Refinement

Schedule Refinement (Defazio et al., 2023) The researchers perform comprehensive evaluation of
learning rate schedules, give proofs on the convergence of some common optimization approaches,
and proposed some important conclusions and algorithms:
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• Warm-up followed by linear decay is the best overall non-adaptive schedule, outperforming
cosine decay.

• Schedule Refinement for SGD ĝt = Median-filter(∥gt∥,width = τT, pad =

(nearest, reflect)), wt = ĝ−2
t , η′t = wt

∑T
p=t+1 wp, ηt = η′t/maxp(η

′
p).

• Schedule Refinement for Adam ĝt = Median-filter(∥
∑d

i=1

g2
t,i√
vt,i

∥,width = τT, pad =

(nearest, reflect)), wt = ĝ−1
t , η′t = wt

∑T
p=t+1 wp, ηt = η′t/maxp(η

′
p).

7.6.3 “Scaling Law” of Learning Rate

µP and Tensor Program series (Yang et al., 2022) In Tensor Program series, the researchers led
by Greg Yang1 provides theoretical foundation for the “Scaling Law” of hyper-parameter to the
model size. In Tensor Program V (µP), they researched how the best hyper-parameters (including
initialization variances and learning rates for different optimizers of different components in deep
learning models) change with respect to the size of these components.
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