
A Brief Summary of Optimization in Deep Learning
in New Era

Yifeng Liu
University of California, Los Angeles

liuyifeng@g.ucla.edu

Abstract

Newton’s method provides one of the earliest insight in optimization theories.
Based on gradient descent, a lot of optimization theories including momentum,
adaptive learning, sign of gradient, second-order optimization, variance reduc-
tion and scheduler-free optimization have been proposed. However, there is
a lack of comprehensive and clear summary of these approaches with unified
notation system. This paper attempts to give a systematic, explicit and con-
cise formulation of over 100 optimization methods in deep learning with ci-
tation, which is potential for promoting innovation in optimization theory in
deep learning, while facilitating relevant researchers to search for references.
And the related materials can be found in https://github.com/lauyikfung/
A-Summary-Sheet-of-Optimization-in-Deep-Learning.

1 Introduction

Optimization lies at the heart of deep learning, facilitating the training process of deep neural net-
works nowadays, including large language models (Team et al., 2025; Liu et al., 2024a; Grattafiori
et al., 2024)(Figure 1), and computer vision models (Ramesh et al., 2022; Liu et al., 2023). From
the foundational principles of Newton’s method, numerous optimization theories has emerged, sig-
nificantly enhancing the efficiency and effectiveness of training deep neural networks. These ad-
vancements encompass a wide array of techniques, including momentum-based methods, adaptive
learning rate strategies, approaches leveraging the sign of gradients, second-order optimization tech-
niques, variance reduction schemes, and even scheduler-free optimization paradigms. Despite the
proliferation of these innovative methods, a comprehensive and clearly structured summary, partic-
ularly one employing a unified notation system, has been notably absent. This gap often poses a
challenge for researchers seeking to navigate the vast and rapidly evolving field of deep learning op-
timization, hindering both the promotion of new innovations and the efficient discovery of relevant
references.

This paper aims to bridge this gap by presenting a systematic, explicit, and unified formulation of
more than 100 optimization methods for deep learning. Each method is documented with appro-
priate citations, aiming to provide a singular, accessible resource for the research community. By
offering a unified framework and clear descriptions, this work seeks to foster further innovation in
optimization theory within deep learning and to significantly streamline the process for researchers
to identify and utilize relevant methodologies.

2 From Gradient Descent to Adaptive Learning

2.1 Notations

In the paper, f(θt) denotes the deep learning network at t-th iteration with parameter θt, which
is usually regarded as a vector except for second-order methods. The objective is J(θt) and the

https://github.com/lauyikfung/A-Summary-Sheet-of-Optimization-in-Deep-Learning
https://github.com/lauyikfung/A-Summary-Sheet-of-Optimization-in-Deep-Learning

Figure 1: A brief history of large language models. Some optimizers are used in train-
ing well-known large language models. The base figure is from https://medium.com/@lmpo/
a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a

gradient is ∇θJ(θt) = ∇f(θt, ξt) = gt, where the input is ξt by default. Moreover, ∥x∥ = ∥x∥2
denotes the 2-norm, while |x| denotes taking the absolute value element-wisely. η is the learning
rate or step size, and it may change over iterations unless specific explanation. We just omit the
initialization of parameters and state variables for simplicity.

2.2 Newton’s Method

For Newton’s method, f(θ + ϵ) = f(θ) + ϵ⊤∇f(θ) + 1
2ϵ

⊤Hϵ +O(∥ϵ∥3), where H = ∇2f(θ) is
the Hessian matrix (Zhang et al., 2021).

For first-order method, the second-order and higher-order terms (12ϵ
⊤Hϵ + O(∥ϵ∥3)) are ignored

since they have relatively lower influence on the convergence of training and much harder to com-
pute, and the update rule comes to:

θt+1 = θt − η∇f(θt),

where η = −ϵ is the step size.

While in second-order methods, only the higher-order terms (O(∥ϵ∥3)) are ignored. Since at the
minimum of f , ∇θf(θ) = 0, then ϵ = −H−1∇f(θ), and it comes to:

θt+1 = θt − ηH−1∇f(θt),

where η is the step size.

2.3 Gradient Descent (GD)

The gradient descent method is the first-order approximation of Newton method. Full GD:

• Using full datasets for gradient descent, 1. θt+1 = θt − η∇θJ(θt) = θt − ηgt. Here and
below, gt is defined the gradient of full data/mini batch data on θt.

• Convergence O(1
T). Here the convergence is defined by f(xT)− f∗

Stochastic GD (SGD): Using one sample per step, convergence O(1√
T
)

Batch GD (BGD): Using small batch (size=b) per steps, convergence O(1√
bT

+ 1
T)

2

https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a
https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a

Optimization in
Deep Learning

From Gradient Descent
to Adaptive Learning
(Sec. 2)

Basic Methods
(Sec. 2.3) Newton’s Method/Full GD/SGD/BGD

Momentum and
Related (Sec. 2.4)

Momentum/NAG/ASGD/ONS/NGD
AdaGrad/AdaGrad-Norm/AdaDelta/RMSProp/
pbSGDM(pbSGD)

Adam and
Derivatives
(Sec. 3)

Minute Modification
(Sec. 3.2.1)

AdamW/AMSgrad/AdaMax/Yogi/AdaFom/AdamX/
ADOPT/NAdam/Padam/RAdam/Adam+/AdaX/
AdaBelief/AdamP(SGDP)/AdamWN/C-AdamW/
CAdam/AdaReg/ASGO(DASGO)/AdamPower/MGUP

Clipping Involved (Sec. 3.2.2) AdaBound/Adai/LARS/LAMB/ACClip/AM-MSGD

More EMA Involved (Sec. 3.2.3) Prodigy/Adan/AdEMAMix

More Complicated Design (Sec. 3.2.4) Adafactor/Amos

Sign of gradient (Sec. 4) Methods RProp/SignSGD/Signum/SAM/ASAM/
LookSAM/Lion/Tiger/Grams

Preconditioned Optimizers and
Second-Order Methods (Sec. 5)

Diagonalized Hessian Matrices (Sec. 5.1) vSGD-l/vSGD-g

Hutchinson’s Method
for Hessian Estimation
(Sec. 5.2)

AdaHessian/Sophia/OASIS

Fisher Information Matrix (Sec. 5.3) H-FAC/NGD

SVD Approximation
(Sec. 5.4)

K-FAC/FOOF/Shampoo/Muon(Moonlight)/
AdaMuon/PolarGrad/AdaDiag(AdaDiag++)/
COSMOS/Dion/MARS-M/MuonAdam/
NorMuon/Conda/SSO

Miscellaneous (Sec. 5.5) BFGS/L-BFGS/SOAP/Hessian-free

Variance Reduction
(Sec. 6) Methods

SAG/SDCA/SAGA/SVRG/α-SVRG/SARAH/Hybrid-SGD/
SPIDER-SFO/SpiderBoost/AdaSpider/SNVRG/STORM/STORM+/
Super-Adam/ROOT-SGD/AdaSVRPS/AdaSVRLS/VRAdam/
MARS(MARS-AdamW/MARS-Lion/MARS-Shampoo)/MVR

Other topics
(Sec. 7)

Scheduler-Free Methods (Sec. 7.1) Schedule-Free AdamW/D-Adaptation/
Adam++/AdaGrad++

Randomized Updating (Sec. 7.2) GLD/SGLD/SGFS/SVRG-LD

Reconciliation of Optimizers (Sec. 7.3) AdaGraft

Architecture-specific
Optimizers (Sec. 7.4)

GaLore/Adam-mini/Adalayer/
AdamC/STORM-PG/SPPO/Muon-clip

Oracle-based Optimization
Methods (Sec. 7.5) CG/SCG/Scion/Gluon

Something Beyond
Optimizers (Sec. 7.6)

Scheduler(WSD/WSD-S)/Schedule Refinement/
Scaling Law of LR(µP and Tensor Program series)

Figure 2: Summary of all the optimizers covered in this paper.

2.4 Momentum and Related

Momemtum (Grum, 2023) mt+1 = γmt + η∇θJ(θt), θt+1 = θt −mt+1

Nestorov’s Accelerated Gradient (NAG) (Nesterov, 1983) mt+1 = γmt + η∇θJ(θt − γmt),
θt+1 = θt −mt+1

ASGD (Polyak & Juditsky, 1992) θt+1 = θt − η · 1
t+1

∑t
i=1 gi

Online Newton Step (ONS) (Hazan et al., 2007) rt = rt−1 + g2t , θt+1 = θt − η
rt+ϵgt

Normalized Gradient Descent (NGD) (Hazan et al., 2015) θt+1 = θt − η gt
||gt|| .

AdaGrad (Duchi et al., 2011) rt = rt−1 + g2t , θt+1 = θt − η√
rt+ϵgt

AdaGrad-Norm (Ward et al., 2020) rt = rt−1 + ∥gt∥2, θt+1 = θt − η√
rt+ϵgt

3

AdaDelta (Zeiler, 2012) vt = ρvt−1+(1−ρ)g2t , θt = θt−1−η
√
ut−1√
vt+ϵgt,ut = ρut−1+(1−ρ)∆θ2t ,

where ∆θt = θt − θt−1

RMSProp (Tieleman & Hinton, 2012) vt = ρvt−1+(1−ρ)g2t (EMA (Exponential Moving Average)
of the squared gradient), θt+1 = θt − η√

vt+ϵgt

pbSGDM (Zhou et al., 2020a) vt+1 = βvt − ηsign(gt)|gt|γ , θt+1 = θt + vt+1, when β = 0, it
reduces to pbSGD, and when γ = 0, it reduces to SGD.

3 Adam and Derivatives

Adam (Kingma & Ba, 2015)

• mt = β1mt−1 + (1− β1)gt (EMA of gradient, use mt below if have same expression)

• vt = β2vt−1+(1−β2)g2t (EMA of squared gradient, use vt below if have same expression)

• θt+1 = θt − η m̂t√
v̂t+ϵ

, where m̂t = mt

1−βt1
, v̂t = vt

1−βt2
(Use m̂t or v̂t below if have same

expression)

3.1 Other forms for Adam

3.1.1 Hessian Matrices

θt+1 = argminθ{η ⟨mt, θ⟩ + 1
2 ||θ − θt||2Ht

}. In closed form: θt+1 = θt − ηH−1
t mt. (In some

works, Pt = H−1
t ∈ S++ is the preconditioning matrix or preconditioner (Lau et al., 2025).)

• Ht =
√

diag(vt) · 1−βt1√
1−βt2

for AdamW;

• Ht =
√

diag(m2
t) for Lion;

• Ht = (
∑t

τ=1 GtG
⊤
t)

1/4 ⊗ (
∑t

τ=1 G
⊤
t Gt)

1/4 for Shampoo.

3.1.2 Matrix form of vt

θt+1 =
∏

F,
√
Vt
(θt − ηtmt/

√
v̂t), where θ ∈ F , Vt = diag(v̂t)

3.2 Derivatives of Adam

In the following algorithms, if not specified, mt, vt, m̂t, v̂t and the updating rule are the same with
Adam, or AdamW with decoupled weight decay.

3.2.1 Minute Modification

AdamW (Loshchilov & Hutter, 2019) θt+1 = θt − η(m̂t√
v̂t+ϵ

+ λθt), where λ is called decoupled
weight decay (hyper-parameter). And The decoupled weight decay can be applied to the algorithms
below.

AMSgrad (Reddi et al., 2018) ṽt = max(ṽt−1, vt), v̂t = ṽt
1−βt2

.

AdaMax (Loshchilov & Hutter, 2019) ut = max(β2ut−1, |gt|), θt+1 = θt − η m̂t

ut
.

Yogi (Zaheer et al., 2018) vt = vt−1 − (1− β2)sign(vt−1 − g2t)g
2
t .

AdaFom (Chen et al., 2018) vt = (1− 1/t)vt−1 + (1/t)g2t , θt+1 = θt − η mt√
vt

.

AdamX (Tran et al., 2019) m̂t = mt, v̂t = max{ (1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt}.

ADOPT (Taniguchi et al., 2024) mt = β1mt−1 + (1− β1)
gt

max
√
vt,ϵ

, θt+1 = θt − ηmt.

NAdam (Dozat, 2016) θt+1 = θt − η 1√
v̂t+ϵ

(β1m̂t +
1−β1

1−βt1
gt), by taking ψ = 0 in formula below

4

• In PyTorch implementation, θt+1 = θt − η 1√
v̂t+ϵ

(µt+1
mt

1−Πt+1
i=1µi

+ (1−µt)
1−Πti=1µi

gt), where

µt = β1(1− 0.96tψ

2).

Padam (Chen & Gu, 2018) ṽt = max(ṽt−1, vt), θt+1 = θt − ηt
mt

ṽpt
. And the output is chosen from

{θt} with P (θout = θt) =
ηt−1∑T−1
i=1 ηi

.

RAdam (Liu et al., 2020a) ρ∞ = 2
1−β2

− 1, ρt = ρ∞ − 2tβt2
1−βt2

. If ρt > 4, lt =
√
(1− βt

2)/vt,

rt =
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

, θt+1 = θt − ηrtm̂tlt; otherwise θt+1 = θt − ηm̂t.

Adam+ (Liu et al., 2020b) ηt = αβγ

max(||zt||1/2,ϵ0)
, θt+1 = θt − ηzt, zt+1 = (1− β)zt + β∇θJ((1−

1
β)θt +

1
β θt+1), where I replace a in the original papar with γ for clarity

AdaX (Li et al., 2020) vt = (1 + β2)vt−1 + β2g
2
t , v̂t = vt

(1+β2)t−1

AdaBelief (Zhuang et al., 2020) vt = β2vt−1 + (1− β2)(gt −mt)
2 + ϵ

AdamP (Heo et al., 2021) pt = mt√
vt+ϵ . If cos(θt, gt) < δ/

√
dim(θt), qt = pt − (θt·pt)θt

||θt||22
, else

qt = pt. θt+1 = θt − ηqt.

• SGDP Similar to AdamP, but pt = βpt−1 + gt.

AdamWN (Loshchilov, 2023) θ̂t = θt − η m̂t√
v̂t+ϵ

, θt+1 = θ̂t − kt(1− rt∥θ0∥
∥θ̂t∥

)θ̂t, kt ∈ [0, 1], rt∥θ0∥
is the target weight norm for θt.

C-AdamW (Liang et al., 2024) ut = m̂t√
v̂t+ϵ

, ϕt = 1ut⊙gt≥0, η̄t = η d
∥ϕt∥0+1 , θt+1 = θt − η̄t(ϕt ◦

ut + λθt).

CAdam (Wang et al., 2024) θt+1 = θt − η m̂t√
v̂t+ϵ

⊙ 1mt⊙gt>0.

AdaReg (Gupta et al., 2017) rt = rt−1 + gtg
⊤
t , Ht = argminH{Tr(r⊤t H) + Φ(H)}, θt+1 =

θt −Htgt.

• Φ(H) = Tr(H−1) (Ht = (
∑t

s=1 gsg
⊤
s)

−1/2) for AdaGrad (Duchi et al., 2011);

• Φ(H) = − log |H| (Ht = (
∑t

s=1 gsg
⊤
s)

−1) for ONS (Hazan et al., 2007).

ASGO (An et al., 2025) For 2-dimension θt, gt, rt = rt−1 + gtg
⊤
t , Λt = r

1/2
t + ϵIm, θt+1 =

θt − ηΛ−1
t gt.

• DASGO For 2-dimension θt, gt, vt = β2vt−1+(1−β2)diag(g⊤t gt), θt+1 = θt−η mt√
vt+ϵ

.

AdamPower Use powered gradient (Wang et al., 2025b) g̃t = |gt|psign(gt) to replace the gradient
in AdamW.

MGUP-AdamW (Da Chang134) ηt = η

√
1−βt2

1−βt1
, ut = mt√

vt+ϵ , ϕt = MGUP(ut ⊙ gt), θt+1 =

θt − ηt(ϕt ⊙ ut + λθt), where MGUP outputs ϕt,i = 1/τ for i ∈ ItopK with ItopK as the index set
of the largest K elements of ut · gt with K = ⌊τ · d⌋, otherwise ϕt,i = τ .

3.2.2 Clipping Involved

AdaBound (Luo et al., 2019) ηt = Clip(α/
√

diag(vt), ηl, ηu)/
√
t, where, ηl and ηu are lower

bound and upper bound of learning rates, θt+1 = θt − ηtmt.

Adai (Xie et al., 2022) v̄t = mean(v̂t), β1,t = Clip(1 − β0

v̄t
v̂t, 0, 1 − ϵ), m̂t =

mt

1−Πts=1β1,t
, θt+1 =

θt − ηm̂t.

LARS (You et al., 2017) mt = β1mt−1 + (1 − β1)(gt + λθt), θt+1 = θt − η Clip(||θt||,γl,γu)
||θt||+ϵ mt,

where Clip(x, γl, γu) = min(max(x, γl), γu), γl is default to 0 if only 1 bound given

5

LAMB (You et al., 2020) rt = m̂t√
v̂t+ϵ

, θt+1 = θt − η Clip(||θt||,γl,γu)
||rt+λθt||+ϵ (rt + λθt)

ACClip (Zhang et al., 2020) mt = β1mt−1 + (1 − β1)gt, vαt = β2v
α
t + (1 − β2)|gt|α, θt =

θt−1 − ηmt ·min{ vt
|mt|+ϵ , 1}.

AM-MSGD βt = Clip((λ+1)g⊤
t dt−⟨dt−gt,gt+λdt⟩

∥dt−gt∥2
2

, 0, βmax,t), dt+1 = βt+λ
1+λ dt +

1−βt
1+λ gt, θt+1 =

θt − ηdt+1.

3.2.3 More EMA Involved

Prodigy (Bernstein & Newhouse, 2024)mt = β1mt−1+(1−β1)ηtgt, vt = β2vt−1+(1−β2)η2t g2t ,
rt =

√
β2rt−1+(1−

√
β2)η

2
t g

⊤
t (θ0−θt), st =

√
β2st−1+(1−

√
β2)η

2
t gt, ηt+1 = max(ηt,

rt
∥st∥1

),
θt+1 = θt − ηt

mt√
vt

Adan (Xie et al., 2024) vt = (1 − β2)vt−1 + β2(gt − gt−1), nt = (1 − β3)nt−1 + β3[gt + (1 −
β2)(gt − gt−1)]

2, θt = 1
1+λη [θ −

η√
nt+ϵ ◦ (mt + (1− β2)vt)]

AdEMAMix (Pagliardini et al., 2024) rt = β3rt−1 +(1− β3)gt, θt = θt−1 − η(m̂t+αtrt√
v̂t+ϵ

+λθt−1)

3.2.4 More complicated Design

Adafactor (Shazeer & Stern, 2018) ut = gt√
v̂t

, ût = ut
max(1,RMS(ut)/d)

, θt+1 = θt − ηtût, where
αt = η ·max(ϵ2,RMS(θt)), β2,t = 1− tτ , and

• For weight vector θt ∈ Rn, v̂t = β2,tv̂t−1 + (1− β2,t)(g
2
t + ϵ11n);

• For weight matrix θt ∈ Rm×n, rt = β2,trt−1+(1−β2,t)(g2t+ϵ11m1⊤n)1n, vt = β2,tvt−1+
(1− β2,t)1

⊤
m(g2t + ϵ11m1⊤n), v̂t = rtvt/1

⊤
mrt.

Amos (Tian & Parikh, 2022) ct = (1 + 1
4

√
ηbt)

−1/2, dt = (1 + 1
4

√
ηη̃bt)

−1, with η̃ the expected
scale for model weights θ, (Optional) g̃t = χ

max(χ,∥gt∥)gt, vt = βvt−1 + (1 − β)M2(g̃t)
2, where

M2(a) :=
√

1
k

∑k
i=1 a

2
i is the quadratic mean of the entries. v̂t = vt

1−βt , γt = ct
η2

v̂t
M2(gt)

2,

δt = dt(
ηη̃√
v̂t
gt +

γt
2 θt). bt+1 = bt + γt(1 + bt), (Optional) δ̃t = mt+1 = µmt + (1 − µ)δt,

θt+1 = θt − δ̃t

4 Sign of Gradient

RProp (Riedmiller & Braun, 1993) for 0 < η− < 1 < η+,

• If gt · gt−1 > 0, ηt = min(η+ηt−1, ηmax), θt+1 = θt − ηtSign(gt)
• If gt · gt−1 < 0, ηt = max(η−ηt−1, ηmin), θt+1 = θt −∆θt, where ∆θt = θt − θt−1

• Otherwise ηt = 1, θt+1 = θt − ηtSign(gt)

SignSGD (Bernstein et al., 2018) θt+1 = θt − ηSign(gt).

Signum (Bernstein et al., 2018) mt = βmt−1 + (1− β)gt ,θt+1 = θt − ηSign(mt).

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) ϵ̂t = ρ Sign(gt)|gt|q−1/||gt||q/pq ,
θt+1 = θt − η∇θJ(θt + ϵ̂t).

ASAM (Kwon et al., 2021) θt+1 = θt−α(∇θJ(θt+ρ
T 2
θt

gt

||T 2
θt

gt||2)+λθt)
†, where Tθ is some invertible

linear operator such as Tθ = diag(|θ|).

LookSAM (Liu et al., 2022) If t mod k = 0, ḡt = ∇θJ(θ+ ρgt/||gt||), g̃t = ḡt − ||ḡt|| (gt·ḡt)gt
||gt||2||ḡt|| ;

else ḡt = gt + α ||gt||
||g̃t−1|| g̃t−1, g̃t = g̃t−1. θt+1 = θt − ηḡt.

Lion (Chen et al., 2023) ct = β1mt−1 + (1 − β1)gt, mt = β2mt−1 + (1 − β2)gt, θt+1 = θt −
η(Sign(ct) + λθt)

6

• Tiger (Su, 2023) (A special case of Lion when β1 = β2 = β) mt = βmt−1 + (1 − β)gt,
θt+1 = θt−η(Sign(mt)+λθt). For bias and normalization parameters, ηi = 0.5η, λ = 0,
otherwise ηi = η ×RMS(θt,i), λ = Constant> 0

Grams (Cao et al., 2024) (Based on AdamW) θt+1 = θt − η(Sign(gt) ◦ | m̂t√
v̂t+ϵ

|+ λθt)

5 Preconditioned Optimizers and Second-Order Methods

Preconditioned approaches usually use a preconditioner Ht to adjust the updates by involving the
inter-dependencies among model parameters. According to the Newton’s Method,

θt+1 = θt − (∇2
θtJ(θ))

−1∇θtJ(θt) = θt −H−1
t gt.

Therefore, a direct motivation for preconditioned approaches is to directly involve or approximate
the second-order information in optimization process. However, direct computation needs O(n2)
time, therefore, adequate approximation or estimation is needed.

5.1 Diagonalized Hessian Matrices

Usually, diagonalized Hessian matrices and updates are expected. Becker (1988) first use diagonal
Hessian as the pre-conditioner by ignoring off-diagonal entries:

θt+1 = θt − η
gt

|diagonal(Ht)|+ ϵ
,

where we use “diagonal” to indicate taking diagonal entries instead of forming diagonal matrix with
entries from another vector (denoted as “diag”).

vSGD-l (Schaul et al., 2013) mt = (1 − τ−1
t)mt−1 + τ−1

t gt, vt = (1 − τ−1
t)vt−1 + τ−1

t g2t ,
ht = (1− τ−1

t)ht−1 + τ−1
t |diagonal(Ht)|, ηt = m2

t

htvt
, τt+1 = (1− m2

t

vt
)τt + 1, θt+1 = θt − ηtgt.

vSGD-g, same as vSGD-l, but ηt =
∑
i(mt)

2
i

h̄tmaxi(ht)i
.

5.2 Hutchinson’s Method for Hessian Estimation

To estimate Ht, Hutchinson’s method (Hutchinson, 1989) can be used: z ∼ Rademacher(0.5),
∂g⊤z
∂θ = ∂g⊤

∂θ z + g⊤ ∂z
∂θ = ∂g⊤

∂θ z = Htz, D = diag(H) = E[z ⊙ (Hz)].

AdaHessian (Yao et al., 2021) (Based on Adam) vt = β2vt−1+(1−β2)D2
t , θt+1 = θt−η m̂t

(
√
v̂t)k+ϵ

,
where k is the Hessian power.

Sophia (Liu et al., 2024b) mt = β1mt−1 +(1− β1)gt, if t mod k = 1 for the size of the step group
k, ht = β2ht−k +(1−β2)ĥt, where ĥt is calculated using one of the following Hessian estimators:

• Hutchinson: Draw u ∼ N (0, Id), ĥt = u⊙∇(⟨gt, u⟩);
• Gauss-Newton-Bartlett: Compute logits on mini-batch {l(θt, ξt,b)}Bb=1, sample ŷt,b ∼

Softmax(l(θt, ξt,b)),∀b ∈ [B]. ĝ = 1
B∇L(l(θt, ξt,b), ŷt,b) with loss function l, ĥ =

B · ĝ ⊙ ĝ,

Otherwise, ht = ht−1. θt+1 = θt − η(Clip(mt

max{γht,ϵ} , 1)− λθt).

OASIS (Jahani et al.) vt = β2vt−1 + (1− β2)D
2
t , v̂t = max{vt, α} for a positive truncation value

α; ηt = min{
√
1 + St−1ηt−1,

||θt−θt−1||v̂t
2||gt−gt−1||∗v̂t

}, where S0 = +∞, θt+1 = θt − ηt
gt
v̂t

, St =
ηt

ηt−1
.

5.3 Fisher Information Matrix

Another way to estimate Hessian matrix is to compute Fisher information matrix (proposed by
Amari (1998) and H-FAC (Martens & Grosse, 2015)), since v̂t is an approximation to the diag-
onal of Fisher information matrix (Pascanu & Bengio, 2014):

F = E[
d log p(y|x, θ)

dθ

(d log p(y|x, θ)
dθ

)⊤
] = E[DθDθ⊤].

7

Natural Gradient Descent (NGD) (Amari, 1998) θt+1 = θt − 1
λF

−1gt.

5.4 SVD Approximation

Sometimes, to approximate Hessian matrix, SVD is utilized. To approximate this process, they
developed Newton-Schulz iteration (Higham, 2008) methods for computing UV ⊤ for g = UΣV ⊤,
by setting X0 = g/∥g∥l2→l2 or X0 = g/∥g∥F , where ∥M∥α→β := maxx

∥Mx∥β
∥x∥α is the induced

operator norm. Then UV ⊤ can be approximated by several iteration of Xt+1 = 3
2Xt − 1

2XtX
⊤
t Xt.

• Usually, NewtonSchulz5 is often utilized by applying Newton-Schulz methods for
5 iterations with Xt+1 = aXt + bXtX

⊤
t Xt + c(XtX

⊤
t)2Xt for (a, b, c) =

(3.4445,−4, 7750, 2.0315).
• Polar Express (Amsel et al., 2025) (For 5 steps):

(ai, bi, ci) = [(8.28721201814563,−23.595886519098837, 17.300387312530933),

(4.107059111542203,−2.9478499167379106, 0.5448431082926601),

(3.9486908534822946,−2.908902115962949, 0.5518191394370137),

(3.3184196573706015,−2.488488024314874, 0.51004894012372),

(2.300652019954817,−1.6689039845747493, 0.4188073119525673)].

K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) For one layer of neural network ul =
θlhl−1 + bl,hl = ϕ(ul), for Gl = ∇ulJ(θl), K-FAC updates θl by Ll,t = Ll,t−1 + GlG

⊤
l ,

Rl,t = Rl,t−1 + hl−1h
⊤
l−1, θl,t+1 = θl,t − ηL−1

l,t gtR
−1
l,t .

FOOF (Benzing, 2022) Similar to K-FAC, but Σl,t = βΣl,t−1 + (1 − β)GlG
⊤
l , Ll,t = Ll,t−1

(except for every T steps, Ll,t = Σl,t + ϵI), θl,t+1 = θl,t − ηL−1
l,t gt.

Shampoo (Gupta et al., 2018) Lt = Lt−1+gtg
⊤
t ,Rt = Rt−1+g

⊤
t gt, θt+1 = θt−ηL−1/4

t gtR
−1/4
t .

• Proposed by Bernstein & Newhouse (2024), ∆θ = −η(gg⊤)−1/4g(g⊤g)−1/4 =
−ηUV ⊤, where g = UΣV ⊤ is the SVD decomposition of the gradient.

CASPR (Duvvuri et al., 2024) (Only for 2D parameters θt ∈ Rm×n) Lt = Lt−1 + gtg
⊤
t , Rt =

Rt−1 + g⊤t gt, L̃
−1/4
t = (Lt + ϵIm)−1/4, R̃−1/4

t = (Rt + ϵIn)
−1/4, Ut = L̃

−1/4
t gt + gtR̃

−1/4
t ,

θt+1 = θt − η(L̃
−1/4
t Ut + UtR̃

−1/4
t).

Muon (Jordan et al., 2024) (Only for 2D parameters θt ∈ Rm×n) Mt = µMt−1 + gt, Ot =
NewtonSchulz5(Mt), θt+1 = θt − ηOt. (In practice, µMt + gt is used in NewtonSchulze5 instead
of Mt.)

• Moonlight (Liu et al., 2025a) θt+1 = θt − η(0.2
√

max(m,n)Ot + λθt)

AdaMuon (Si et al., 2025) (Based on Muon) vt = µvt−1 + (1− µ)Ot ⊙Ot, Ôt =
Ot√
vt+ϵ , θt+1 =

θt − η(0.2
√
mn

||Ôt||F
Ôt + λθt).

PolarGrad (Lau et al., 2025) UtHt = polar(gt), θt+1 = θt − η tr(Ht)Ut.

• Polar Decomposition: For any matrix M ∈ Rm×n, it has a polar decomposition A = UpH
(ifm ≥ n) orA = HUp (ifm < n) for semi-orthogonal matrixUp ∈ Rm×n and Hermitian
matrix H ∈ Sn+ (if m ≥ n) or Sm+ (if m < n). For UΣV ⊤ = SVD(A), Up = UV ⊤,
H = V ΣV ⊤ (if m ≥ n) or H = UΣU⊤ (if m < n).

• PolarMuon: mt = βmt−1+(1−β)gt, UtHt = polar(mt), θt+1 = θt−η(tr(Ht)Ut+λθt).
• Polar-first: UtHt = polar(gt),mt = βmt−1+(1−β)Ut, θt+1 = θt−η(tr(Ht)mt+λθt).

AdaDiag (Nguyen et al., 2025) (Only for 2D parameters θ ∈ Rm×n)) If t mod T = 0, Pt,,Q
⊤
t =

SV D(gt) else Pt, Q
⊤
t = Pt−1, Q

⊤
t−1. g̃t = P⊤

t gt, mt = β1mt−1+(1−β1)g̃t, vt = β2vt−1+(1−
β2)g̃

2
t , θt+1 = θt − ηt(Pt

mt√
vt+ϵ + λθt)

8

• AdaDiag++: similarly but g̃t = P⊤
t gtQt, θt+1 = θt − ηt(Pt

mt√
vt+ϵQ

⊤
t + λθt)

COSMOS (Liu et al., 2025b) (Only for 2D parameters θ ∈ Rm×n)): mt = β1mt−1 +
(1 − β1)gt, ut = QR(β2ut−1st−1 + (1 − β2)g

⊤
t gtut−1), st = u⊤t (β2ut−1st−1u

⊤
t−1 + (1 −

β2)g
⊤
t gt)ut, vt = β2vt−1 + (1 − β2)(gtut) ⊙ (gtut), at = (

mtut/(1−βt1)√
(vt+ϵ)/(1−βt2)

)u⊤t , bt =

Norm(NewtonSchulz5(mt−mtutu
⊤
t

||mt−mtutu⊤
t ||F

)), θt+1 = θt − ηNorm(at + γbt
√
m), where Norm(X) =

√
nX

||X||F .

Dion (Ahn et al., 2025) (Centralized version. Only for 2D parameters θ ∈ Rm×n) Bt = mt−1 + gt.
Then do Power Iteration for 1 iteration: Pt = Orthogonalize(BtQt−1) (orthogonalize Pt using
Cholesky decomposition), Rt = B⊤

t Pt. mt = Bt − (1 − µ)PtR
⊤
t , Qt = ColumnNormalize(Rt)

(Normalize each column of Rt), θt = θt−1 − η
√
m/nPtQ

⊤
t .

MARS-M (Liu et al., 2025c) (Only for 2D parameters θ ∈ Rm×n) ct = gt + γt
β1

1−β1
(gt −

∇f(θt−1, ξt)), c̃t = Clip(ct, 1), mt = β1mt−1 + (1 − β1)c̃t, Ot = NewtonSchulz5(mt),
θt+1 = θt − ηt(0.2

√
max(m,n)Ot + λθt).

NorMuon (Li et al., 2025) (Only for 2D parameters θ ∈ Rm×n) mt = β1mt−1 + (1 − β1)gt.
Ot = NewtonSchulze5(mt), vt = β2vt−1 + (1 − β2)meancol(Ot · Ot), Vt = ExpandRoows(vt),
Ôt = Ot/(

√
V t + ϵ), θt+1 = θt − η(λθt + 0.2

√
mnÔt/∥Ôt∥F .

MuonAdam (Crawshaw et al., 2025) For 2D factors mt = β1mt−1 + (1 − β1)gt, θt+1 = θt −
ηmPolar(mt) with polar decomposition. For 1D parameters, use Adam(W) with different learning
rate.

Conda (Wang et al., 2025a) (Column-Normalized Adam) (Only for 2D parameters θ ∈ Rm×n,
assume m ≤ n) mt = β1mt−1 + (1− β1)gt. If t mod T = 0, Ut,Σt, V

⊤
t = SVD(mt), Ūt = Ut;

else Ūt = Ūt−1. m′
t = Ū⊤

t mt, nt = β2Vt−1 + (1− β2)(Ū
⊤
t gt)

2, θt+1 = θt + ηŪt
m′
t√

nt+ϵ
1−β2

1−β1
.

SSO (Xie et al., 2026) (Only for 2D parameters θ ∈ Rm×n) mt = βmt−1 + (1 − β)gt, m̂t =
mt/∥mt∥F . (σt, ut, vt) = PowerIteration(θt) (to get the top singular value and vectors), Θt =

utv
⊤
t . DefineR =

√
dout/din as µP scaler. λ∗t = argminλ⟨Θt,msign(m̂t+λΘt)⟩ (using Bisection

search with tolerance ϵ). θt+1 = θt ·R/σt − ηR · msign.(m̂t + λ∗tΘt)

5.5 Miscellaneous

BFGS (Broyden–Fletcher–Goldfarb–Shanno) (Fletcher, 1987) dt = −Htgt, αt =

argminα f(θ − αdt), θt+1 = θt + αtdt, Ht+1 = (I − styt
y⊤
t st

)⊤Ht(I − yts
⊤
t

y⊤
t st

) +
sts

⊤
t

y⊤
t st

, where
st = θt+1 − θt, yt = gt+1 − gt.

L-BFGS (Liu & Nocedal, 1989) Based on BFGS, but choose αt satisfying Wolfe conditions (try
αt = 1 first): f(θt + αtdt) ≤ f(θt) + β′αtg

⊤
t dt. Moreover, for m̂ = min{t,m− 1},

Ht+1 = (

t−m̂∏
i=t,inv

V ⊤
i)H0(

t∏
i=t−m̂

Vi) +

t∑
j=t−m̂

ρj(

j+1∏
i=t,inv

V ⊤
i)sjs

⊤
j (

t∏
i=j+1

Vi),

where
∏t′

i=t,inv denotes the product of matrices with indices from t to t′ < t, and ρt = 1/(y⊤t st).

SOAP (Vyas et al., 2024) (Only for 2D parameters) g′t = Q⊤
LgQR, mt = β1mt−1 + (1 − β1)gt,

m′
t = Q⊤

LmtQR, vt = β2vt−1 + (1 − β2)(g
′
t)

2, θt+1 = θt − ηQL
m̂′
t√

v̂t+ϵ
Q⊤

R, where m̂′
t =

m′
t

1−βt1
,

v̂t =
vt

1−βt2
. Lt = β2Lt−1 + (1− β2)gg

⊤, Rt = β2Rt−1 + (1− β2)g
⊤g. For every k steps, obtain

QL =QR-Eigenvectors(LQL), QR =QR-Eigenvectors(RQR), where QR-Eigenvectors returns the
eigenvector matrix of the QR decomposition for the input matrix.

Hessian-free (Martens et al., 2010) Define the function Bn(d) = H(θt)d + λd, where H(θt)d =

limϵ→0
∇f(θt+ϵd)−gt

ϵ . pt = CG-Minimize(Bt,−gt), where CG-Minimize is the linear conjugate
gradient algorithm, θt+1 = θt + pt. λ can be adjusted by Levenberg-Marquardt style heuristic:

9

for ρt = f(θt+p)−f(θt)
qθt (p)−qθt (0)

with qθt(·) the minimization objective of CG, if ρt < 1
4 , λ → 3

2λ, else if

ρt >
3
4 , λ→ 2

3λ, otherwise keep λ unchanged.

6 Variance Reduction

￼1

RProp

(1993)

AdaGrad

(2010)

RMSProp

(2012)

Adam

(2015)

AdamW

(2019)

AMSGrad

(2019)

Padam

(2018)

Earliest adaptive
gradient method

Adjust learning rate
based on history

Incorporating
Exponential
Moving Average

Integrate RMSProp
with Nesterov's
momentum

Decoupled
weight decay

Running maximum of v²
for convergence guarantee

Unify AMSGrad
with SGD

SAG(2013)

SDCA(2013)

STORM

(2019)

SVRG(2013)

SAGA(2014)

SARAH

(2017)

SNVRG

(2018)

SpiderBoost

(2019)

SPIDER

(2018)

Earliest variance
reduction methods

Employ biased recursive
gradient estimation
for reduced memory

Improved
Convergence
Rate

Integrate Normalized
Gradient Descent
for non-convex cases

Refine SPIDER
with use of large
constant step size

Simplify SPIDER and
SNVRG with stochastic
recursive momentum

Multiple reference
points for better
convergence rate

Adam+

(2020)

SuperAdam

(2021)

MARS

(2025)

AdaSPIDER

(2022)

Estimate the gradient
only at extrapolated points
to reduce the variance of
first-order moment into Adam

Integrate variance reduction
with AdamW for improved
convergence rate

Introduce adaptive
step size in SPIDER

Unified optimization framework
reconciling preconditioned gradient
methods with variance reduction for
large models

Figure 3: A brief history of variance reduction optimization methods. Some optimizers are omitted.

Since adaptive gradient methods may have risks of high stochastic gradient variance, some re-
searchers consider variance reduction techniques to address this challenge. The core idea, first
proposed by Johnson & Zhang (2013), is as follows:

mt = ∇f(θt, ξt)−∇f(θ̃t, ξt) +∇F (x̃),

where x̃ is some reference point (anchoring point) that is periodically updated. By differentiating
the gradient for different points on the same data point, the variance in optimization can be reduced
significantly.

SAG (Roux et al., 2012) θt+1 = θt − η
n

∑n
i=1 yi,t, where at each t, one ξit is chosen and yi,t =

∇f(θt, ξi,t) and for other samples, keep y·,t unchanged.

SDCA (Shalev-Shwartz & Zhang, 2013) (For machine learning task L(θ) = 1
n

∑n
i=1 ϕi(θ

⊤ξi) +
λ
2 ∥θ∥

2 with scalar convex function ϕi), for ξt = ξi, ∆αt = argmax∆α −ϕ∗i (−(αt−1+∆α), ξt)−
λn
2 ∥θt−1 +

1
λnξt∆α∥

2, αt = αt−1 +∆αtei, θt = θt−1 + (λn)−1ξt∆αt. Output 1
T

∑T
i=1 θt−1 or

randomly chosen from {θt}Tt=1.

SAGA (Defazio et al., 2014) Keep a n× d matrix ϕ = {∇f(θ0, ξi)}ni=1 storing the parameters, for
ξt = ξj , θt+1 = argminθ{h(θ) + 1

2γ ∥θ− (θt − γ[∇f(θt, ξt)− ϕj +
1
n

∑n
i=1 ϕi])∥2}, where h(θ)

is the regularization function, then update ϕj = θt and keep other ϕi unchanged.

SVRG (Johnson & Zhang, 2013) For each epoch s, calculate the full gradient gs for θs. For each
iteration t, θs,t+1 = θs,t − η(∇f(θs,t, ξs,t)−∇f(θs, ξs,t)+ gs), set θs = θs,T or randomly chosen
from {θs,t}Tt=1

• α-SVRG (Yin et al., 2025) θs,t+1 = θs,t − η(αt(∇f(θs,t, ξs,t) − ∇f(θs, ξs,t)) + gs),
where αt =

Cov(∇f(θs,ξs,t),∇f(θs,t,ξs,t))
Var(∇f(θs,ξs,t))

.

10

SARAH (Nguyen et al., 2017) For each epoch s, calculate the full gradient vs,0 = gs for θs, θs,1 =
θs,0−ηvs,0. For each iteration t, vs,t = ∇f(θs,t, ξs,t)−∇f(θs, ξs,t)+vs,t−1, θs,t+1 = θs,t−ηvs,t,
set θs randomly chosen from {θs,t}Tt=1.

Hybrid-SGD (Tran-Dinh et al., 2019) (Hybrid SGD with SARAH) mt = β(mt−1 + gt −
∇f(θt−1, ξt)) + (1− β)gt, θt+1 = θt − ηmt

SPIDER-SFO (Fang et al., 2018) vt = gt for every q steps with batch size S1, otherwise vt =
gt −∇f(θt−1, ξt) + vt−1. Update parameters with Option I: θt+1 = θt − ηvt/∥vt∥ until ∥vt∥ less
than some threshold, or Option II: θt+1 = θt − ηtvt with ηt = min(η/∥vt∥, η/(2ϵ)). Output θT or
randomly choose from {θt}Tt=1.

SpiderBoost (Wang et al., 2019) vt = gt −∇f(θt−1, ξt) + vt−1, θt+1 = θt − ηvt/∥vt∥
AdaSpider (Kavis et al., 2022) If t mod n = 0, vt = gt, else vt = gt − ∇f(θt−1, ξt) + vt−1.

γt = 1/
(
n1/4β0

√
n1/2G2

0 +
∑t

s=0 ||vs||2
)

, θt+1 = θt − γtvt.

SNVRG (Zhou et al., 2020b) For loop parameters {Tl}, set T =
∏K

l=1 Tl or T ∼ Geom(1/(1 +∏K
l=1 Tl)) as the total number of steps. For each step t, rt = min{j : 0 = (t mod

∏K
l=j+1 Tl), 0 ≤

j ≤ K}. For 0 ≤ l ≤ rt − 1, θlt = θlt−1; otherwise θlt = θt. For 0 ≤ l ≤ rt − 1, glt = glt−1;
for rt + 1 ≤ l ≤ K, glt = 0. Then uniformly generate index set It with size Brt , if rt > 0,
grtt = 1

Brt

∑
i∈It

[∇f(θrtt , ξi)−∇f(θrt−1
t , ξi)], otherwise g0t = 1

B0

∑
i∈It

∇f(θ0t , ξi). And θt+1 =

θt − η
∑K

l=0 g
l
t. The output parameter is randomly chosen from {θt}Tt=1.

STORM+ (Levy et al., 2021) (Based on STORM) at+1 = 1
(1+

∑t
i=1 ∥gi∥2)2/3

, ηt =
1

(
∑t
i=1 ∥di∥2/ai+1)1/3

Super-Adam (Huang et al., 2021) (Based on Adam) ct = αtgt + (1 − αt)[ct−1 + τ(gt −
∇f(θt−1, ξt))], τ ∈ {0, 1}, θ̃t = argminθ{η ⟨ct, θ⟩ + 1

2 ||θ − θt||2Ht
}, θt+1 = (1 − µt)θt + µtθ̃t,

where Ht is defined by one of the following cases:

• Case 1: Ht = diag(
√
vt + λ)

• Case 2: vt = βvt−1 + (1− β)∥gt∥, Ht = (vt + λ)Id

• Case 3 (Barzilai-Borwein technique): bt =
∥⟨gt−∇f(θt−1,ξt),θt−θt−1⟩∥

∥θt−θt−1∥ , Ht = (bt + λ)Id

• Case 4-1: vt = β2vt−1 + (1− β2)(gt −mt)
2, Ht = diag(

√
vt + λ)

• Case 4-2: vt = β2vt−1 + (1− β2)∥gt −mt∥, Ht = (vt + λ)Id

ROOT-SGD (Li et al., 2022) vt = gt +
t−1
t (vt−1 −∇f(θt−1, ξt)), θt+1 = θt − ηvt

AdaSVRPS/AdaSVRLS (Jiang & Stich, 2024) Fξt(θ) = f(θ, ξt)+w⊤(∇f(wt)−∇f(wt, ξt))+
µF
2 ∥θ− θt∥2, θt+1 = θt − ηt∇θFξt(θt). With probability pt+1, wt+1 = θt, otherwise wt+1 = wt.

Output 1
T

∑T
t=0 θt. Here

• ηt = min{ Fξt (θt)−F∗
ξt

cp∥∇Fξt (θt)∥2
√∑t

s=0 Fξs (θs)−F∗
ξs

, ηt−1} for AdaSVRPS

• ηt = min{γt 1

cl
√∑t

s=0 γs∥∇Fξs (θs)∥2
, ηt−1} for AdaSVRLS, where γt can be obtained by

Armijo Backtracking line-search (Armijo, 1966; Nocedal & Wright, 2006): do γ = βγ
until f(θt − γ∇f(θt, ξt), ξt) ≤ f(θt, ξt)− ργ∥∇f(θt, ξt)∥2

• For AdaSPS and AdaSLS, just set Fξt(θ) = f(θ, ξt) and set F ∗
ξt

as a predefined lower
bound.

VRAdam (Li et al., 2023) (Based on Adam)mt = β1mt−1+(1−β1)(gt+ β1

1−β1
(gt−∇f(θt−1, ξt)),

θt+1 = θt − η mt√
v̂t+ϵ

11

MARS (Yuan et al., 2025) (Based on AdamW/Lion/Shampoo) ct = gt+γt
β1

1−β1
(gt−∇f(θt−1, ξt)),

c̃t = Clip(ct, 1), mt = β1mt−1 + (1 − β1)c̃t, θt+1 = argminθ{η ⟨mt, θ⟩ + 1
2∥θ − θt∥2Ht

}, or
θt+1 = argminθ{η ⟨mt, θ⟩+ 1

2∥θ − (1− ηλ)θt∥2Ht
} with weight decay.

• MARS-AdamW: vt = β2vt−1 + (1 − β2)c̃
2
t , Ht :=

√
diag(vt) · 1−βt1√

1−βt2
, (equivalently,

θt+1 = θt − η(m̂t√
v̂t+ϵ

+ λθt))

• MARS-Lion: Ht =
√

diag(m2
t), (equivalently, θt+1 = θt − η(Sign(mt) + λθt))

• MARS-Shampoo: Ht = (
∑t

τ=1 gτg
⊤
τ)

1/4⊗ (
∑t

τ=1 g
⊤
τ gτ)

1/4, (equivalently, Ut,Σt, Vt =
SVD(mt) θt+1 = θt − η(UtV

⊤
t + λθt)), and use Newton-Schulz iteration methods to

approximate SVD decomposition (See Section 5.4 for detail).

• MARS-Approximate: ct = gt + γt
β1

1−β1
(gt − gt−1).

• MVR1 (Chang et al., 2025) θt+1 = θt − ηtOt, where Ot ∈ argminO ∥O − mt∥F such
that O⊤O = In. And MVR2 is the approximate version of MVR1.

7 Other Topics

7.1 Scheduler-Free Methods

Schedule-Free AdamW (Defazio et al., 2024)

• (Form 1) yt = (1 − β1)zt + β1θt, gt = ∇θJ(yt), ηt = η
√
1− βt

2 min(1, t/Twarmup),

zt+1 = zt − ηt(
gt√
vt+ϵ + λyt), θt+1 = (1− ct+1)θt + ct+1zt+1, where ct+1 =

η2
t∑t

i=1 η2
i

• (Form 2) ηt = η
√

1− βt
2 min(1, t/Twarmup), gt = ∇θJ(yt), ∆t = ηt(

gt√
vt+ϵ + λyt),

yt+1 = yt+
β1ct+1

1−β1
(yt−θt)− [β1ct+1+(1−β1)]∆t, θt+1 = θt+

ct+1

1−β1
(yt−θt)−ct+1∆t,

where ct+1 =
η2
t∑t

i=1 η2
i

D-Adaptation (Defazio & Mishchenko, 2023)

• Dual Averaging: mt = mt−1 + dt−1gt, ηt = 1√∑k
i=0 ∥gi∥2

. For d̂t, option I: d̂t =

ηt∥mt∥2−
∑t−1
i=0 ηid

2
i ∥gi+1∥2

2∥mt∥ or option II: d̂t =
∑t−1
i=0 diηi⟨gi+1,mi⟩

∥mt∥ , dt = max(dt−1, d̂t),

θt+1 = θt − ηtmt. Output 1∑T−1
t=0 dt

∑T
t=1 dt−1θt

• Gradient Descent: ηt =
dt−1√

G2+
∑t
i=0 ∥gi∥2

,mt = mt−1+ηtgt, d̂t =
∥mt∥2−

∑t
i=0 η2

i ∥gi+1∥2

2∥mt∥ ,

dt = max(dt−1, d̂t), θt+1 = θt − ηtmt. Output 1∑T
t=0 ηt

∑T
t=0 ηtθt

• AdaGrad: mt = mt−1 + dt−1gt, a2t = a2t−1 + g2t , At = diag(at), d̂t =
∥mt∥2

A
−1
t

−
∑t−1
i=0 d2

i ∥gi+1∥2

A
−1
i

2∥mt∥1
, dt = max(dt−1, d̂t), θt+1 = θt − A−1

t mt. Output
1∑T−1

t=0 dt

∑T
t=1 dt−1θt

• SGD: ηk = ηdk−1/G, mt = mt−1 + ηtgt, zt = zt−1 − ηtgt, θt+1 = βθt + (1 − β)zt,

d̂t =
2
∑t−1
i=0 ηi+1⟨gi+1,mi⟩

∥mt∥ , dt = max(dt−1, d̂t).

• Adam version (Based on Adam)mt = β1mt−1+(1−β1)ηdt−1gt, θt+1 = θt− mt√
vt+ϵ , st =√

β2st−1+(1−
√
β2)ηdt−1gt, rt =

√
β2rt−1+(1−

√
β2)ηdt−1 ⟨gt, st−1⟩(diag(

√
vt+ϵ))−1 ,

d̂t =
rt

(1−
√
β2)∥st∥1

, dt = max(dt−1, d̂t)

Adam++ (Tao et al., 2024) ηt = max(ηt−1, ∥θt−θ0∥/
√
d), β1,t = β1λ

t−1, mt = β1,tmt−1+(1−
β1,t)gt, θt+1 = θt − ηt · H−1

t mt, where Ht = ϵ + diag(st), and st is calculated by either of the
following ways:

12

• Case I: st =
√∑t

i=0 g
2
i

• Case II: vt = β2vt−1 + (1− β2)g
2
t , st =

√
(t+ 1)maxt′≤t(vt′)

AdaGrad++ (Tao et al., 2024) Similar to Adam++, but only choose Case I of st, and λ = 0.

7.2 Randomized Updating

GLD (Gradient Langevin Dynamics) (Durmus & Moulines, 2017; Dalalyan, 2017a,b) θ0 = 0,
ϵt ∼ N(0, Id×d), θt+1 = θt − ηgt +

√
2η/βϵt, where gt is the full gradient.

SGLD (Welling & Teh, 2011) Same as GLD, but gt is the average gradient over samples in small
batch.

SGFS (Ahn et al., 2012) For total number of samples N and batch size B, γ = B+N
B . For small

batch {ξt,i}Bi=1, vt = (1 − β)vt−1 + β 1
n−1

∑B
i=1(∇f(θt, ξt,i) − gt)(∇f(θt, ξt,i) − gt)

⊤, ϵt ∼
N (0, 4Cϵ), θt+1 = θt + 2(γNvt +

4C
ϵ)−1(gt + ϵt).

SVRG-LD (Xu et al., 2018) For each epoch s, first compute the full gradient gs for θs, g̃s,t =

gs,t − ∇f(gs, ξs,t) + gs, ϵt ∼ N(0, Id×d), θt+1 = θt − ηg̃s,t +
√
2η/βϵt. At the last iteration T

for each epoch, gs = gs,T .

7.3 Reconciliation of Optimizers

AdaGraft (Agarwal et al., 2020) For optimizers M,D, θt,M = M(θt, gt), θt,D = D(θt, gt),
θt+1 = θt +

∥θt,M−θt∥
∥θt,D−θt∥+ϵ · (θt,D − θt)

7.4 Architecture-specific Optimizers

GaLore (Zhao et al., 2024a) (Adam for LLM layer weight matrix): θt ∈ Rm×n, if t mod T = 0
U, S, V = SVD(gt), Pt = U [:, : r] (low-rank projection), otherwise Pt = Pt−1. Then estimate
the low-rank gradient Rt = P⊤

t gt, and use Adam to optimize: θt+1 = θt + ηαPt
mt√
vt+ϵ with scale

factor α

Adam-mini (Zhang et al., 2024) (Based on Adam) (For each parameter in parameter blocks) vt =
β2vt−1 + (1 − β2) ∗ Mean(g ⊙ g). For Transformers, partition the parameters of embedding and
output layers by tokens, partition the parameters of query and key matrices by heads, and partition
the parameters of value matrices, attention projection matrices and MLP layers by output neurons.

Adalayer (Zhao et al., 2024b) (Based on Adam, for language model) For each layer: vt = β2vt−1+
(1− β2)∥gt∥22/

√
p with p the number of parameters in each layer, θt+1 = θt − η mt√

vt+ϵ

AdamC (Based on AdamW) (Only for the layer immediately followed by a normalization operation
including LayerNorm or BatchNorm, otherwise use AdamW): θt+1 = θt − η(m̂t√

v̂t+ϵ
+ η

ηmax
λθt).

(In Transformers, AdamC is applied to every linear layer except the output layer.)

STORM-PG (Yuan et al., 2020) (Based on Reinforce Learning tasks) θt+1 = θt + ηĝt,
ĝt+1 = (1 − γ)g′t + gt, where gt = 1

B

∑
i∈B di(θt+1), g′t = 1

B

∑
i∈B[ĝt − d

θt+1

i (θt)] is
the gradient estimation with different parameters on small batch of trajectories {τi}i∈B with
size B, and di(θ) =

∑H−1
h=0 di,h(θ), dθ

′

i (θ) =
∑H−1

h=0
p(τi,h|θ)
p(τi,h|θ′)di,h(θ), where di,h(θ) =

(
∑h

t=0 ∇ log πθ(at|st))(γhr(sh, ah)− bh).

SPPO (Wu et al., 2024) (Based on Reinforce Learning tasks)

θt+1 = argmin
θ

E(ξt,yt,P̂ (yt≻πt|ξt))
(
log

(πθ(yt|ξt)
πt(yt|ξt)

)
− η(P̂ (yt ≻ πt|ξt)−

1

2
)
)2
,

where πt = πθt is the policy model with the parameter θt.

Muon-clip (QK-Clip) (Moonshot AI, 2025) (Based on Muon, for Attention mechanism) In each
layer, for input {xi}, query and key weight Wq,Wk, Smax = (maxij xiWq) · (xjWk). First
update all parameters using Muon, then if Smax > τ :

13

• MHA/MQA/GQA: multiply
√
τ/Smax to Wq,Wk;

• MLA: multiply
√
τ/Smax to Wqc,Wkc and multiply τ/Smax to Wqr.

7.5 Oracle-based Optimization Methods

Linear Minimization Oracle (LMO): For norm-ball D := {x| ||x|| ≤ ρ} for some norm || · ||
(Euclidean norm in default), lmo(s) ∈ argminx∈D⟨s, x⟩: for s ∈ Rdout×din :

• 1→RMS (ColNorm, such as Embedding): colj(s) → −
√
dout

colj(s)
∥colj(s)∥2

;

• 1→ ∞ (Sign): s→ −sign(s);

• RMS→RMS (Spectral, such as Linear module): s → −
√

dout
din
UV ⊤ for U,Σ, V ⊤ =

SVD(s);

• RMS→ ∞ (RowNorm, such as LM Head): rowi(s) = − 1√
din

rowi(s)
∥rowi(s)∥2

Conditional Gradient Method (CG) (Frank et al., 1956; Clarkson, 2010; Jaggi, 2013) θt+1 =
(1− η)θt + η · lmo(gt)

Stochastic Conditional Gradient (SCG) (Pethick et al., 2025) mt = βmt−1 + (1− β)gt, θt+1 =
(1 − η)θt + η · lmo(mt) (θt+1 = θt + η · lmo(mt) for Unconstrained SCG (uSCG)). For different
base optimization method, the LMOs are different:

• Normalized SGD (Hazan et al., 2015) and Momentum Normalized SGD (Cutkosky &
Mehta, 2020): −ρ mt

||mt||2 ;

• SignSGD (Bernstein et al., 2018) and Signum (Bernstein et al., 2018): −ρsign(mt);

• Muon (Jordan et al., 2024) (with non-Nesterov based momentum): −ρUV ⊤ for UΣV ⊤ =
SVD(mt).

Scion (Pethick et al., 2025) mt = βmt−1 + (1 − β)gt, θt+1 = (1 − η)θt + η · lmo||·||α→β
(mt)

(θt+1 = θt + η · lmo||·||α→β
(mt) for unconstrained version), where ||A||α→β = sup||z||α=1 ||Az||β .

Gluon (Riabinin et al., 2025) mt = βmt−1 + (1 − β)gt, θt+1 = argmin||θt+1−θt||≤pt⟨mt, θt⟩ (pt
can be ||gt||

L0+L1||gt|| or L0

(t+1)3/4
.

7.6 Something Beyond Optimizers

In the previous sections, I did not emphasize the changing of the learning rate η. In this section, I
collected some interesting research related to the changing rule of learning rate (Scheduler).

7.6.1 Scheduler

Warmup-Stable-Decay (WSD) Scheduler (Hu et al., 2024) Different from the Cosine Learning
Rate Scheduler, in MiniCPM, the researchers utilized WSD scheduler (linear warmup-stable learn-
ing rate-decay). It is widely used in industry because it can support continual training, and decaying
schedule in the end is also compatible for downstream tasks fine-tuning.

For intermediate checkpoints, WSD performs decay schedule and starts from the state before decay
when continuing training. However, in WSD-S (Wen et al., 2024), the researchers find that the
dispose of training in decay phase is not necessary, and just starts from the state after decay with the
max learning rate is fine.

7.6.2 Schedule Refinement

Schedule Refinement (Defazio et al., 2023) The researchers perform comprehensive evaluation of
learning rate schedules, give proofs on the convergence of some common optimization approaches,
and proposed some important conclusions and algorithms:

14

• Warm-up followed by linear decay is the best overall non-adaptive schedule, outperforming
cosine decay.

• Schedule Refinement for SGD ĝt = Median-filter(∥gt∥,width = τT, pad =

(nearest, reflect)), wt = ĝ−2
t , η′t = wt

∑T
p=t+1 wp, ηt = η′t/maxp(η

′
p).

• Schedule Refinement for Adam ĝt = Median-filter(∥
∑d

i=1

g2
t,i√
vt,i

∥,width = τT, pad =

(nearest, reflect)), wt = ĝ−1
t , η′t = wt

∑T
p=t+1 wp, ηt = η′t/maxp(η

′
p).

7.6.3 “Scaling Law” of Learning Rate

µP and Tensor Program series (Yang et al., 2022) In Tensor Program series, the researchers led
by Greg Yang1 provides theoretical foundation for the “Scaling Law” of hyper-parameter to the
model size. In Tensor Program V (µP), they researched how the best hyper-parameters (including
initialization variances and learning rates for different optimizers of different components in deep
learning models) change with respect to the size of these components.

8 Acknowledgement

Thank Prof. Quanquan Gu, and other students in UCLA AGI Lab including Huizhuo Yuan. Thank
former colleagues from ByteDance Inc. and Moonshot Inc. including Jianlin Su for his blogs at
https://kexue.fm/.

References
Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive

gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Sungjin Ahn, Anoop Korattikara Balan, and Max Welling. Bayesian posterior sampling via stochas-
tic gradient fisher scoring. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress,
2012. URL http://icml.cc/2012/papers/782.pdf.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Noah Amsel, David Persson, Christopher Musco, and Robert Gower. The polar express: Op-
timal matrix sign methods and their application to the muon algorithm. arXiv preprint
arXiv:2505.16932, 2025.

Kang An, Yuxing Liu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive
structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1–3, 1966.

Sue Becker. Improving the convergence of backpropagation learning with second order method. In
Proceedings of the 1988 Connectionist Models Summer School, San Mateo, CA. Morgan Kauf-
mann, 1988.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimiza-
tion. In International conference on machine learning, pp. 1817–1853. PMLR, 2022.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

1https://thegregyang.com/

15

https://kexue.fm/
http://icml.cc/2012/papers/782.pdf
https://thegregyang.com/

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient descent with adaptive momentum scaling.
arXiv preprint arXiv:2412.17107, 2024.

Da Chang, Yongxiang Liu, and Ganzhao Yuan. On the convergence of muon and beyond. arXiv
preprint arXiv:2509.15816, 2025.

Jinghui Chen and Quanquan Gu. Padam: Closing the generalization gap of adaptive gradient meth-
ods in training deep neural networks. 2018.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1–30, 2010.

Michael Crawshaw, Chirag Modi, Mingrui Liu, and Robert M Gower. An exploration of non-
euclidean gradient descent: Muon and its many variants. arXiv preprint arXiv:2510.09827, 2025.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International confer-
ence on machine learning, pp. 2260–2268. PMLR, 2020.

Ganzhao Yuan21 Da Chang134. Mgup: A momentum-gradient alignment update policy for stochas-
tic optimization.

Arnak Dalalyan. Further and stronger analogy between sampling and optimization: Langevin monte
carlo and gradient descent. In Conference on Learning Theory, pp. 678–689. PMLR, 2017a.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(3):651–
676, 2017b.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 27, 2014.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how
much? adaptive learning rate scheduling by refinement. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Alain Durmus and Éric Moulines. Nonasymptotic convergence analysis for the unadjusted langevin
algorithm. The Annals of Applied Probability, pp. 1551–1587, 2017.

16

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes
preconditioners through kronecker approximation for deep learning. In The Twelfth International
Conference on Learning Representations, 2024.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in neural information
processing systems, 31, 2018.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 2 edition, 1987.
ISBN 978-0-471-91547-8.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Marcus Grum. Learning representations by crystallized back-propagating errors. In Leszek
Rutkowski, Rafal Scherer, Marcin Korytkowski, Witold Pedrycz, Ryszard Tadeusiewicz, and
Jacek M. Zurada (eds.), Artificial Intelligence and Soft Computing - 22nd International Con-
ference, ICAISC 2023, Zakopane, Poland, June 18-22, 2023, Proceedings, Part I, volume
14125 of Lecture Notes in Computer Science, pp. 78–100. Springer, 2023. doi: 10.1007/
978-3-031-42505-9\ 8. URL https://doi.org/10.1007/978-3-031-42505-9_8.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2):169–192, 2007.

Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex opti-
mization. Advances in neural information processing systems, 28, 2015.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum opti-
mizers on scale-invariant weights. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Nicholas J Higham. Functions of matrices. society for industrial and applied mathematics, 2008.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: faster and universal framework of adaptive
gradients. Advances in Neural Information Processing Systems, 34:9074–9085, 2021.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427–435. PMLR, 2013.

17

https://doi.org/10.1007/978-3-031-42505-9_8

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W Mahoney, and Martin Takac.
Doubly adaptive scaled algorithm for machine learning using second-order information. In Inter-
national Conference on Learning Representations.

Xiaowen Jiang and Sebastian U Stich. Adaptive sgd with polyak stepsize and line-search: Robust
convergence and variance reduction. Advances in Neural Information Processing Systems, 36,
2024.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https://
kellerjordan.github.io/posts/muon/.

Ali Kavis, Stratis Skoulakis, Kimon Antonakopoulos, Leello Tadesse Dadi, and Volkan Cevher.
Adaptive stochastic variance reduction for non-convex finite-sum minimization. Advances in
Neural Information Processing Systems, 35:23524–23538, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905–5914. PMLR, 2021.

Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
unifying preconditioning perspective. arXiv preprint arXiv:2505.21799, 2025.

Kfir Levy, Ali Kavis, and Volkan Cevher. Storm+: Fully adaptive sgd with recursive momentum for
nonconvex optimization. Advances in Neural Information Processing Systems, 34:20571–20582,
2021.

Chris Junchi Li, Wenlong Mou, Martin Wainwright, and Michael Jordan. Root-sgd: Sharp
nonasymptotics and asymptotic efficiency in a single algorithm. In Conference on Learning The-
ory, pp. 909–981. PMLR, 2022.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assump-
tions. Advances in Neural Information Processing Systems, 36:52166–52196, 2023.

Wenjie Li, Zhaoyang Zhang, Xinjiang Wang, and Ping Luo. Adax: Adaptive gradient descent with
exponential long term memory. arXiv preprint arXiv:2004.09740, 2020.

Zichong Li, Liming Liu, Chen Liang, Weizhu Chen, and Tuo Zhao. Normuon: Making muon more
efficient and scalable. arXiv preprint arXiv:2510.05491, 2025.

Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training
with one line of code. arXiv preprint arXiv:2411.16085, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024b.

18

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025a.

Liming Liu, Zhenghao Xu, Zixuan Zhang, Hao Kang, Zichong Li, Chen Liang, Weizhu Chen, and
Tuo Zhao. Cosmos: A hybrid adaptive optimizer for memory-efficient training of llms. arXiv
preprint arXiv:2502.17410, 2025b.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020a.

Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam +: A stochastic method
with adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020b.

Yifeng Liu, Angela Yuan, and Quanquan Gu. Mars-m: When variance reduction meets matrices.
arXiv preprint arXiv:2510.21800, 2025c.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022.

Ilya Loshchilov. Weight norm control. arXiv preprint arXiv:2311.11446, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735–742,
2010.

Moonshot AI. Kimi K2: Open Agentic Intelligence, 2025. URL https://moonshotai.github.
io/Kimi-K2/. Accessed: 2025-07-17.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate o
(1/k2). In Dokl akad nauk Sssr, volume 269, pp. 543, 1983.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In International conference on machine
learning, pp. 2613–2621. PMLR, 2017.

Son Nguyen, Bo Liu, Lizhang Chen, and Qiang Liu. Improving adaptive moment optimization via
preconditioner diagonalization. arXiv preprint arXiv:2502.07488, 2025.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, New York, NY, USA, 2e
edition, 2006.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older.
arXiv preprint arXiv:2409.03137, 2024.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In Yoshua
Bengio and Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

19

https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
scion great again!(bridging theory and practice of lmo-based optimizers for llms). arXiv preprint
arXiv:2505.13416, 2025.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: the rprop
algorithm. In IEEE International Conference on Neural Networks, pp. 586–591 vol.1, 1993. doi:
10.1109/ICNN.1993.298623.

Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. Advances in neural information processing systems, 25,
2012.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International confer-
ence on machine learning, pp. 343–351. PMLR, 2013.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(1), 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. arXiv preprint
arXiv:2507.11005, 2025.

Jianlin Su. Tiger: A tight-fisted optimizer. https://github.com/bojone/tiger, 2023.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any β2 with the optimal rate. Advances in Neural Information Processing
Systems, 37:72438–72474, 2024.

Yuanzhe Tao, Huizhuo Yuan, Xun Zhou, Yuan Cao, and Quanquan Gu. Towards simple and provable
parameter-free adaptive gradient methods, 2024. URL https://arxiv.org/abs/2412.19444.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Ran Tian and Ankur P Parikh. Amos: An adam-style optimizer with adaptive weight decay towards
model-oriented scale. arXiv preprint arXiv:2210.11693, 2022.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Phuong Thi Tran et al. On the convergence proof of amsgrad and a new version. IEEE Access, 7:
61706–61716, 2019.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. Hybrid stochastic gradi-
ent descent algorithms for stochastic nonconvex optimization. arXiv preprint arXiv:1905.05920,
2019.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

20

https://github.com/bojone/tiger
https://arxiv.org/abs/2412.19444

Junjie Wang, Pan Zhou, Yiming Dong, Huan Li, Jia Li, Xun Zhou, Qicheng Lao, Cong Fang, and
Zhouchen Lin. Conda: Column-normalized adam for training large language models faster. arXiv
preprint arXiv:2509.24218, 2025a.

Mingze Wang, Jinbo Wang, Jiaqi Zhang, Wei Wang, Peng Pei, Xunliang Cai, Lei Wu, et al.
Gradpower: Powering gradients for faster language model pre-training. arXiv preprint
arXiv:2505.24275, 2025b.

Shaowen Wang, Anan Liu, Jian Xiao, Huan Liu, Yuekui Yang, Cong Xu, Qianqian Pu, Suncong
Zheng, Wei Zhang, Di Wang, et al. Cadam: Confidence-based optimization for online learning.
arXiv preprint arXiv:2411.19647, 2024.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster
variance reduction algorithms. Advances in Neural Information Processing Systems, 32, 2019.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Tian Xie, Haoming Luo, Haoyu Tang, Yiwen Hu, Jason Klein Liu, Qingnan Ren, Yang Wang,
Wayne Xin Zhao, Rui Yan, Bing Su, Chong Luo, and Baining Guo. Controlled llm training on
spectral sphere, 2026. URL https://arxiv.org/abs/2601.08393.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
Disentangling the effects of adaptive learning rate and momentum. In International conference
on machine learning, pp. 24430–24459. PMLR, 2022.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynam-
ics based algorithms for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Yida Yin, Zhiqiu Xu, Zhiyuan Li, Trevor Darrell, and Zhuang Liu. A coefficient makes svrg effec-
tive. In The Thirteenth International Conference on Learning Representations, 2025.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learn-
ing: Training BERT in 76 minutes. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

21

https://arxiv.org/abs/2601.08393

Huizhuo Yuan, Xiangru Lian, Ji Liu, and Yuren Zhou. Stochastic recursive momentum for policy
gradient methods. arXiv preprint arXiv:2003.04302, 2020.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Quanquan Gu, et al. Mars: Unleashing the power of vari-
ance reduction for training large models. In Forty-second International Conference on Machine
Learning, 2025.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep learning. arXiv
preprint arXiv:2106.11342, pp. 505, 2021.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024,
2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

Beitong Zhou, Jun Liu, Weigao Sun, Ruijuan Chen, Claire J Tomlin, and Ye Yuan. pbsgd: Powered
stochastic gradient descent methods for accelerated non-convex optimization. In IJCAI, pp. 3258–
3266, 2020a.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. Journal of machine learning research, 21(103):1–63, 2020b.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

22

	Introduction
	From Gradient Descent to Adaptive Learning
	Notations
	Newton's Method
	Gradient Descent (GD)
	Momentum and Related

	Adam and Derivatives
	Other forms for Adam
	Hessian Matrices
	Matrix form of vt

	Derivatives of Adam
	Minute Modification
	Clipping Involved
	More EMA Involved
	More complicated Design

	Sign of Gradient
	Preconditioned Optimizers and Second-Order Methods
	Diagonalized Hessian Matrices
	Hutchinson's Method for Hessian Estimation
	Fisher Information Matrix
	SVD Approximation
	Miscellaneous

	Variance Reduction
	Other Topics
	Scheduler-Free Methods
	Randomized Updating
	Reconciliation of Optimizers
	Architecture-specific Optimizers
	Oracle-based Optimization Methods
	Something Beyond Optimizers
	Scheduler
	Schedule Refinement
	``Scaling Law'' of Learning Rate

	Acknowledgement

