A Brief Summary of Optimization in Deep Learning
in New Era

Yifeng Liu
University of California, Los Angeles
linyifeng@g.ucla.edu

Abstract

Newton’s method provides one of the earliest insight in optimization theories.
Based on gradient descent, a lot of optimization theories including momentum,
adaptive learning, sign of gradient, second-order optimization, variance reduc-
tion and scheduler-free optimization have been proposed. However, there is
a lack of comprehensive and clear summary of these approaches with unified
notation system. This paper attempts to give a systematic, explicit and con-
cise formulation of over 100 optimization methods in deep learning with ci-
tation, which is potential for promoting innovation in optimization theory in
deep learning, while facilitating relevant researchers to search for references.
And the related materials can be found in https://github.com/lauyikfung/
A-Summary-Sheet-of-Optimization-in-Deep-Learning.

1 Introduction

Optimization lies at the heart of deep learning, facilitating the training process of deep neural net-
works nowadays, including large language models (Team et al., 2025; Liu et al., 2024a; Grattafiori
et al., 2024)(Figure 1), and computer vision models (Ramesh et al., 2022; Liu et al., 2023). From
the foundational principles of Newton’s method, numerous optimization theories has emerged, sig-
nificantly enhancing the efficiency and effectiveness of training deep neural networks. These ad-
vancements encompass a wide array of techniques, including momentum-based methods, adaptive
learning rate strategies, approaches leveraging the sign of gradients, second-order optimization tech-
niques, variance reduction schemes, and even scheduler-free optimization paradigms. Despite the
proliferation of these innovative methods, a comprehensive and clearly structured summary, partic-
ularly one employing a unified notation system, has been notably absent. This gap often poses a
challenge for researchers seeking to navigate the vast and rapidly evolving field of deep learning op-
timization, hindering both the promotion of new innovations and the efficient discovery of relevant
references.

This paper aims to bridge this gap by presenting a systematic, explicit, and unified formulation of
more than 100 optimization methods for deep learning. Each method is documented with appro-
priate citations, aiming to provide a singular, accessible resource for the research community. By
offering a unified framework and clear descriptions, this work seeks to foster further innovation in
optimization theory within deep learning and to significantly streamline the process for researchers
to identify and utilize relevant methodologies.

2 From Gradient Descent to Adaptive Learning

2.1 Notations

In the paper, f(60;) denotes the deep learning network at ¢-th iteration with parameter 6;, which
is usually regarded as a vector except for second-order methods. The objective is J(6;) and the

https://github.com/lauyikfung/A-Summary-Sheet-of-Optimization-in-Deep-Learning
https://github.com/lauyikfung/A-Summary-Sheet-of-Optimization-in-Deep-Learning

A Brief History of LLMs

2017 2018 2018 2019 2019 2020 2021 2022 2022 2023 2023 2024 2024 2024 2025

JUN JUN OCT FEB OCT mMAY SEP MAR NOV FEB MAR MAR APR DEC JAN
.:1\,_’jn_.\r‘-—.:——t}—.i,——\.——\‘I;-_ 4——!/—\7]#———\ y =) >
GPT { Ts FLAN LLaMA LLaMA-3.1]'
405B
BERT GPT-3.5 OpenAl-o1

GPT-2 InstrutGPT DeepSeek-V3

Transformers GPA-3 ChatGPT
4

1
I
i

AdaFactor (2018) Adam (2015) AdamW (2019)

Figure 1: A brief history of large language models. Some optimizers are used in train-
ing well-known large language models. The base figure is from https://medium. com/@lmpo/
a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3£f59a

gradient is Vo J(0;) = V f(0:,&:) = g+, where the input is &; by default. Moreover, ||x|| = ||x]|2
denotes the 2-norm, while |x| denotes taking the absolute value element-wisely. 7 is the learning
rate or step size, and it may change over iterations unless specific explanation. We just omit the
initialization of parameters and state variables for simplicity.

2.2 Newton’s Method

For Newton’s method, f(6 + €) = f(60) + €'V f(0) + 3¢ He + O(|l¢[|*), where H = V2 f(6) is
the Hessian matrix (Zhang et al., 2021).

For first-order method, the second-order and higher-order terms (3¢ " He + O(||e[|*)) are ignored
since they have relatively lower influence on the convergence of training and much harder to com-
pute, and the update rule comes to:

Ory1 = 0, =V f(0),
where n = —e is the step size.

While in second-order methods, only the higher-order terms (O(||¢||®)) are ignored. Since at the
minimum of f, Vo f(#) = 0, then e = —H !V f(6), and it comes to:

041 =0, —fH 'V f(6,),
where 7 is the step size.
2.3 Gradient Descent (GD)
The gradient descent method is the first-order approximation of Newton method. Full GD:

* Using full datasets for gradient descent, 1. ;41 = 6, — nVgJ(0;) = 0y — ng,. Here and
below, g, is defined the gradient of full data/mini batch data on 6;.

» Convergence O(+). Here the convergence is defined by f(z”) — f*

Stochastic GD (SGD): Using one sample per step, convergence O(%)

Batch GD (BGD): Using small batch (size=b) per steps, convergence O(\/% + 7)

https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a
https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a

From Gradient Descent Newton’s Method/Full GD/SGD/BGD]

to Adaptive Learning
(Sec. 2)

Basic Methods
(Sec. 2.3)
Momentum and
Related (Sec. 2.4)

AdamW/AMSgrad/AdaMax/Yogi/AdaFom/AdamX/
Minute Modification
(Sec. 3.2.1)

ADOPT/NAdam/Padam/R Adam/Adam+/AdaX/
Clipping Involved (Sec. 3.2.2)HAdaBound/Adai/LARS/LAMB/ACClip/AM—MSGDj

Momentum/NAG/ASGD/ONS/NGD
AdaGrad/AdaGrad-Norm/AdaDelta/RMSProp/
pbSGDM(pbSGD)

AdaBelief/AdamP(SGDP)/AdamWN/C-AdamW/
CAdam/AdaReg/ASGO(DASGO)/AdamPower/MGUP

Adam and
Derivatives
(Sec. 3)

More EMA Involved (Sec. 3.2.3)}—(Prodigy/Adan/AdEMAMix)

More Complicated Design (Sec. 32.4))—(Adafactor/Amos]

Sign of gradient (Sec. 4)3 iMethodsj—[RPrOp/SIgnSGD/Slgnum/SAM/ASAM/]

LookSAM/Lion/Tiger/Grams

Diagonalized Hessian Matrices (Sec. 5. l))—[vSGD—l/vSGD—g]

Hutchinson’s Method
for Hessian Estimation HAdaHessian/Sophia/OASlSj
(Sec. 5.2)

Optimization in
Deep Learning

Preconditioned Optimizers and
Second-Order Methods (Sec. 5)

Fisher Information Matrix (Sec. 5.3) HH—FAC/NGD)

SVD Approximation
(Sec. 5.4)

Miscellaneous (Sec. 545)HBFGS/L—BFGS/SOAP/Hessizm—freej

K-FAC/FOOF/Shampoo/Muon(Moonlight)/
AdaMuon/PolarGrad/AdaDiag(AdaDiag++)/
COSMOS/Dion/MARS-M/MuonAdam/
NorMuon/Conda/SSO

SAG/SDCA/SAGA/SVRG/a-SVRG/SARAH/Hybrid-SGD/
Variance Reduction SPIDER-SFO/SpiderBoost/AdaSpider/SNVRG/STORM/STORM+/
(Sec. 6) Super-Adam/ROOT-SGD/AdaSVRPS/AdaSVRLS/VRAdam/
MARS(MARS-AdamW/MARS-Lion/MARS-Shampoo)/MVR

Scheduler-Free Methods (Sec. 7.1) j_[/S\cd}::;iilf/—igze(}/:ﬁﬂwm—Adaptatlon/]

Randomized Updating (Sec. 7.Z)HGLD/SGLD/SGFS/SVRG-LD]

Reconciliation of Optimizers (Sec. 7.3) HAdaGrafl]

Other topics

(Sec. 7) Architecture-specific GaLore/Adam-mini/Adalayer/]

Optimizers (Sec. 7.4) AdamC/STORM-PG/SPPO/Muon-clip

Oracle-based Optimization -
Methods (Sec. 7.5) CG/SCG/Scion/Gluon

Something Beyond Scheduler(WSD/WSD-S)/Schedule Refinement/
Optimizers (Sec. 7.6) Scaling Law of LR(¢:P and Tensor Program series)

Figure 2: Summary of all the optimizers covered in this paper.

2.4 Momentum and Related

Momemtum (Grum, 2023) msy1 = yms + Vo J (1), Or41 = 0: — myyq

Nestorov’s Accelerated Gradient (NAG) (Nesterov, 1983) myy1 = ymy + nVoJ (0 — ymy),
9t+1 =0; — myq1

ASGD (Polyak & Juditsky, 1992) 0y1 =0, — 0+ 75 301 gi

Online Newton Step (ONS) (Hazan et al., 2007) ry = 141 + g7, 0441 = 0; — g
Normalized Gradient Descent (NGD) (Hazan et al., 2015) 0,11 = 6; — nﬁ.
AdaGrad (Duchi et al., 2011) ry = 141 + g2, 0441 = 0; — ﬁgt

AdaGrad-Norm (Ward et al., 2020) 7y = 7,1 + ||g¢||%, 011 = 0; — ﬁgt

AdaDelta (Zeiler, 2012) vy = pvs_1 + (1 —p)g2, 0 = 0,1 — 0™ Z:;gt,ut = pus_1+(1—p)A67,
where AGt = Gt — 0t71

RMSProp (Tieleman & Hinton, 2012) v; = pv;_1+(1—p)g? (EMA (Exponential Moving Average)
of the squared gradient), 0,11 = 6; — ﬁ gt

pbSGDM (Zhou et al., 2020a) vsr1; = Bvr — nsign(g:)|ge|”, 0:41 = 0t + veg1, when 5 = 0, it
reduces to pbSGD, and when v = 0, it reduces to SGD.

3 Adam and Derivatives

Adam (Kingma & Ba, 2015)

 my = fBimy—1 + (1 — B1)g: (EMA of gradient, use m; below if have same expression)
o v = PBovr_1+(1—Fa) gt2 (EMA of squared gradient, use v; below if have same expression)

me =

. _ _ m ~ my — vy — ~ .
01 =0 — 1 Tt where m; =57 Ut =5 (Use my; or v; below if have same

expression)

3.1 Other forms for Adam
3.1.1 Hessian Matrices

0,41 = argming{n (my,0) + 3|0 — 0://,}- In closed form: 6y, = 0, — nH; 'm,. (In some
works, P, = H, Le S, is the preconditioning matrix or preconditioner (Lau et al., 2025).)

« H; = \/diag(v;) - \}% for AdamW;
« H; = \/diag(m?) for Lion;

cH, =X, GGV @ (XL, G Gy)'/* for Shampoo.

3.1.2 Matrix form of v;
0t+1 = H]_-,\/Vt(ﬁt — ntmt/\/ﬁ), where 0 S .F7 VE = dlag(ﬁt)

3.2 Derivatives of Adam

In the following algorithms, if not specified, m;, v¢, My, V¢ and the updating rule are the same with
Adam, or AdamW with decoupled weight decay.

3.2.1 Minute Modification

AdamW (Loshchilov & Hutter, 2019) 611 = 0 — n(\/%;6 + A\0;), where) is called decoupled

weight decay (hyper-parameter). And The decoupled weight decay can be applied to the algorithms
below.
AMSgrad (Reddi et al., 2018) vy = max(vy—1, vt), Uy =

o
-6

AdaMax (Loshchilov & Hutter, 2019) u; = max(Baus—1, |g:

), 9t+1 =0; — 77%-
Yogi (Zaheer et al., 2018) v; = vy_1 — (1 — Ba)sign(vi—1 — g7)g2.

AdaFom (Chen et al., 2018) vy = (1 — 1/t)vy_1 + (1/t)g2, 0441 = O — 77\’/’%.

2
AdamX (Tran et al., 2019) m; = my, Uy = max{%@,l, vt}
gt
max /v¢,€’

ADOPT (Taniguchi et al., 2024) my = Syme—1 + (1 — B1) 011 = 0y — nmy.

NAdam (Dozat, 2016) 6,11 = 0; — nﬁ(ﬁlmt + %gt), by taking ¢ = 0 in formula below
Vrte i

4

e In PyTorch implementation, 0;,1 = 0; — n\/%ﬂ (1 T~ + U_pe) g,), where

1 M 17Ht —1Hi
tap
61(0.96"" 96)

Padam (Chen & Gu, 2018) vy = max(v;—1,vt), 0411 = 0 — 0y =#. And the output is chosen from

{(975} Wlth P(Qout = 9t) Z?t 1117]1 .

RAdam (Liu et al., 20202) ps, = ﬁ — 1, pt = poo — 2”2 e > 4,1 = /(1= BY) /v,
(Pt =4) (Pt —2)poo

Tt = (Poo—4) (poa—2)p1 0t+1 = 0,5 — nrtmtlt; otherwise 0t+1 = Gt — nmt.
Adam™ (Liu et al., 2020b) ; = - L Or41 = 0: —nze, 201 = (1= B)ze + BV J (1 —

max(]|z:[]'/2,€0)”

%)Gt + %9t+1), where I replace a in the original papar with ~y for clarity

AdaX (Lietal, 2020) vy = (1 + B2)vi—1 + Bogi, O = (rrgir—

AdaBelief (Zhuang et al., 2020) vy = Bov;_1 + (1 — B2)(ge — my)? + €

If cos(0:, g¢) < 6/+/dim(6:), ¢+ = pr — Oepe)d: o0

AdamP (Heo et al., 2021) p; = ||9 Iz

qt = Pt- 9t+1 =0, — nq¢-

Jorre

* SGDP Similar to AdamP, but p; = Bp;_1 + gs.

AdamWN (Loshchilov, 2023) 0, = 0, — -2, 6,01 = 0, — ky (1 — Tﬂ'ﬁ(ﬁ”)01, Ky € [0,1], 74|60

is the target weight norm for 6,.

C-AdamW (Liang et al., 2024) u; = % O = Ly, 09,50, Tt = nm, Orr1 =0 —(Pr 0
U +)\Gt)

CAdam (Wang et al., 2024) 0,1 = 6, — n% ® Lin,0g,50-

AdaReg (Gupta et al., 2017) 1y = r4_1 + g19, , Hy = argming{Tr(r] H) + ®(H)}, 0111 =
0y — Hig:.

s ®(H)=Tr(H ') (H; = (Zizl gsgJ)~ /?) for AdaGrad (Duchi et al., 2011);
« ®(H) = —log|H| (Hy = (XL_, gsgJ)~ ") for ONS (Hazan et al., 2007).

ASGO (An et al., 2025) For 2-dimension 0y, g¢, 1 = 7v_1 + g9, » Ay = rt 24 €lm, 0111 =
0 — 77At Jt-

» DASGO For 2-dimension 0y, g;, v; = fovs_1 + (1 — Bo)diag(g, g¢), 041 = 0; — 71 Nore=2

AdamPower Use powered gradient (Wang et al., 2025b) g; = |g¢|Psign(g;) to replace the gradient
in AdamW.

MGUP-AdamW (Da Chang134) 7, = ni\/llj up = S ¢ = MGUP(u; © g1), f,41 =

0; — ne(dr © ug + A0;), where MGUP outputs ¢ ; = 1/7 for i € Ziopx With Ziopk as the index set
of the largest K elements of u; - g; with K = |7 - d|, otherwise ¢ ; = 7.

3.2.2 Clipping Involved

AdaBound (Luo et al., 2019) ; = Clip(a/+/diag(v¢), m;,m.)/V/t, where, 1; and 7, are lower
bound and upper bound of learning rates, 6,1 = 0; — nym;.

Adai (Xie et al., 2022) B, = mean(%;), f1+ = Clip(1 — 229,01 — €), iy = g e =
0y — mmy.

LARS (You et al., 2017) my = Bymy_1 4+ (1 — B1)(ge + A0y), Opyq = 0, — nSl0ellaere)

[16:]]+e
where Clip(x,v;, v,) = min(max(x,;), Vu), Y is default to 0 if only 1 bound given

iy g, Gl)
Ve Oren = 00 = e e (e + M)

ACClip (Zhang' et al,, 2020) my = fimy—1 + (1 — B1)ge, v = Povg + (1 — B2)|ge]*, O =
Or—1 —mmy - mm{‘m’jﬁ, 1}.

LAMB (You et al., 2020) r; =

T —_ —_ —
AM-MSGD 3, = Clip((MH0 GG Em gttt 0, B). dis = G550, + 55000 O =
Or — ndiy1.

3.2.3 More EMA Involved

Prodigy (Bernstein & Newhouse, 2024) my = Brmg_1+(1—B1)nege, v = Bove_1+(1—B2)n2g?,
re = /Bari—1+ (1= vB2)ni gl (00—04), st = V/Base—1+ (1= V/B2)1f ge. nes1 = max(ne, 1747),
Orp1 =0, — 1 %

Adan (Xie et al., 2024) vt =(1- Bg)vt 1+ 8209t — gi—1), e = (1 — Bs)ng—1 + Bsfgr + (1 —
B2) (gt — ge—1)]%, 0 = 1+,\,7 [0 — \/n—tJre o(my+(1— 52)%)]

AdEMAMix (Pagliardini et al., 2024) vy = B3ri—1 + (1 — 83)gt, 0r = 011 — n(% + A0i_1)

3.2.4 More complicated Design
Adafactor (Shazeer & Stern, 2018) u; = g—\/%, up = m, O:11 = 6; — nsuy, where
a; =1 - max(e2, RMS(6,)), B2y =1 —1t7, and
* For weight vector 0, e R, v, = ﬁ2,ti]\t—1 + (1 — ﬁgﬂg)(gtz + €1 1n);
* For weight matrix 8, € R™*" r, = ,827t7’t_1+(1—B27t)(gt2+61 lmljl)ln, vy = Povi—1+
(1 — ﬁ?,t)l;,:(g? + 611m17—|;), @\t = T‘t’l}t/lT—rrL’l"t.

Amos (Tian & Parikh, 2022) ¢; = (1 + 1,/nb,) Y2, dy = (1 + L/nnb,) ™1, with 77 the expected
scale for model weights 6, (Optional) g; = mgt, vy = Bvi_1 + (1 — B)Ma(g:¢)?, where

My(a) = \/%Zf L a? is the quadratic mean of the entries. v; = = N = Ct%jMQ(gt)Q,
(S dt(\/—gt =+ ‘Ytet) bt+1 = bt + ’)/t(l + bt), (Optional) (St = Mty1 = UMy =+ (1 — /J/)ét,
0141 = 0 — 0y

4 Sign of Gradient

RProp (Riedmiller & Braun, 1993) for 0 <~ < 1 < 5™,

e Ifgy-gi—1>0,m = min(n*nt_l, Umaac), Orp1 =0; — mSign(gt)

s Ifgi- g1 < 0,m = max(n™Ne—1, Mmin)> Oe41 = 0 — Ab;, where Aby = 0, — ;1

* Otherwise n; = 1, ;4.1 = 6; — n;Sign(g;)
SignSGD (Bernstein et al., 2018) 0,11 = 6; — nSign(g).
Signum (Bernstein et al., 2018) my = Bmy—1 + (1 — 8)g¢ 0141 = 0 — nSign(my).
Sharpness-Aware Minimization (SAM) (Foret et al., 2021) & = p Sign(g,)|ge|91/g:]|¥?,
0t+1 = 0,5 - ﬁVgJ(ot +/€\t)

ASAM (Kwonetal.,2021) 0y 11 = 0, —a(VaJ (0 +p | ‘Te’ggtl‘)+ A0;)T, where Ty is some invertible

linear operator such as Ty = diag(|6)).

LookSAM (Liu ctal,, 2022) If ¢ mod k = 0, g, = Vo.J (6 + pgi/||gs

else gy = g + a“!g ‘l‘Hgt 1 Gt = Gi—1. 0e41 = 0 — 1Ge.

Liop (Chen et al., 2023) ¢; = Bimy—1 + (1 = B1)ge. my = Bomy—1 + (1 — B2)gs, Orpr = 0y —
n(Sign(cy) + A0y)

) G = e — |9l gty

* Tiger (Su, 2023) (A special case of Lion when 81 = B2 =) my = Bmy—1 + (1 — B) gy,
0¢1+1 = 0; — n(Sign(my) + A8;). For bias and normalization parameters, 7; = 0.5n7, A = 0,
otherwise 1; = n x RMS(0, ;), A = Constant> 0

Grams (Cao et al., 2024) (Based on AdamW) 6,1 = 6, — n(Sign(g;) o |

B+ 20)

S Preconditioned Optimizers and Second-Order Methods

Preconditioned approaches usually use a preconditioner H; to adjust the updates by involving the
inter-dependencies among model parameters. According to the Newton’s Method,

Orir = 0, — (V3,J(0) Vo, J (0;) = 6, — H g,
Therefore, a direct motivation for preconditioned approaches is to directly involve or approximate
the second-order information in optimization process. However, direct computation needs O(n?)
time, therefore, adequate approximation or estimation is needed.

5.1 Diagonalized Hessian Matrices

Usually, diagonalized Hessian matrices and updates are expected. Becker (1988) first use diagonal
Hessian as the pre-conditioner by ignoring off-diagonal entries:
gt
Oiy1 =0 ,
e = el |diagonal (H;)| + €
where we use “diagonal” to indicate taking diagonal entries instead of forming diagonal matrix with
entries from another vector (denoted as “diag”).

vSGD-1 (Schaul et al., 2013) my = (1 — 77 Dmy_y + 77 g ve = (1 — 77 Dy + 77 g7,
2 2
ht = (1 — Tt_l)ht_l + Tt_1|diagonal(Ht)|, m = htvt s Tt+1 = (1 — %)7} + 1, 9t+1 = 9t — NtGgt-

vSGD-g, same as vSGD-1, but 1, = T ()

5.2 Hutchinson’s Method for Hessian Estimation

To estimate H,;, Hutchinson’s method (Hutchinson, 1989) can be used: z ~ Rademacher(0.5),

0902 _ 09 ;4 g0z _ 29, _ H,», D = diag(H) = E[z © (Hz)].

AdaHessian (Yao et al., 2021) (Based on Adam) vy = Bovy 1+ (1—£2)D?, 0,41 =
where k is the Hessian power.

gt_n#9

Sophia (Liu et al., 2024b) m; = Bymy—1 + (1 — B1) gy, if t mod k = 1 for the size of the step group
k, hy = Bahi—i + (1 — B2)hy, where hy is calculated using one of the following Hessian estimators:

« Hutchinson: Draw u ~ N(0, 1), hy = u ® V({gs, u));

* Gauss-Newton-Bartlett: Compute logits on mini-batch {I(6;, &, b)}b 1> sample ¥ b
Softmax(1(6;,&:4)),¥b € [Bl. § = LVL((0:, &), 7r) with loss function I, h =
B-gog,

Otherwise, hy = hy_1. 041 = 6, — n(Clip(ﬁ, 1) — \6).

OASIS (Jahani et al.) v; = Bovy—1 + (1 — B2)D?, 0, = max{v;, a} fora positive tmncation value
[16:—0: 1|5
a;m = min{\/1+ S;_1m4—1, Qiil;t ;t 11|‘|‘*t }, where Sy = 400, 0441 = 0 — L z, Sy = m

1

5.3 Fisher Information Matrix

Another way to estimate Hessian matrix is to compute Fisher information matrix (proposed by
Amari (1998) and H-FAC (Martens & Grosse, 2015)), since 7; is an approximation to the diag-
onal of Fisher information matrix (Pascanu & Bengio, 2014):

_ dlogp(ylz,0) dlogp(ylz,0) T, T
F =E| 7 (0) 1= E[DIDI"].

Natural Gradient Descent (NGD) (Amari, 1998) 6,11 = 0; — %F‘l gt

5.4 SVD Approximation

Sometimes, to approximate Hessian matrix, SVD is utilized. To approximate this process, they

developed Newton-Schulz iteration (Higham, 2008) methods for computing UV T for g = USV T,
by setting Xo = g/||gll1,—1, or Xo = g/|g||r, where ||M||qo—p := max, % is the induced
operator norm. Then UV T can be approximated by several iteration of X; 1 = %Xt — %X X, X

e Usually, NewtonSchulz5 is often utilized by applying Newton-Schulz methods for
5 iterations with Xy, = aX; + bX: X, X; + c¢(X: X,)?X; for (a,b,c) =
(3.4445, -4, 7750, 2.0315).

* Polar Express (Amsel et al., 2025) (For 5 steps):

(ai, bi,c;) = [(8.28721201814563, —23.595886519098837,17.300387312530933),
(4.107059111542203, —2.9478499167379106, 0.5448431082926601),
(3.9486908534822946, —2.908902115962949, 0.5518191394370137),
(3.3184196573706015, —2.488488024314874,0.51004894012372),
(2.300652019954817, —1.6689039845747493, 0.4188073119525673)].

K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) For one layer of neural network u; =
Oh;_1 + b, hy = ¢(w), for G; = Vy,J(0;), K-FAC updates 6; by L;; = L;—1 + GlGlT,
Riy=Rig1+hshl 00 =00—nL g R .

FOOF (Benzing, 2022) Similar to K-FAC, but El,t = le,tfl + (1 — 5)G1Gl—r, Ll,t = L17t71
(except for every T steps, L;; = X+ +€l), 01411 =01+ — nLZtlgt.

Shampoo (Guptaetal.,2018) Ly = Ly 1 +g:9,» Ri = Ri_1+9; gi» 0111 = 0t—nLt_1/4gth_1/4.

* Proposed by Bernstein & Newhouse (2024), A8 = —n(gg") Y*g(g"g)"/* =
—nUV' T, where g = ULV T is the SVD decomposition of the gradient.

CASPR (Duvvuri et al., 2024) (Only for 2D parameters ; € R™*™) L, = L; 1 + gi9), Ry =

Ry + g0 g L V' = (Lo + eln) ™4 ROV = (Ry+ L)V, U = L7 gy + g7
9t+1 = 9t — T](L;l/4Ut + UtR;1/4).

Muon (Jordan et al., 2024) (Only for 2D parameters 6; € R™*"™) M, = pM;_1 + g¢, Oy =
NewtonSchulz5(M;), 6;+1 = 6; — nO;. (In practice, uM; + g, is used in NewtonSchulze5 instead
of Mt)

* Moonlight (Liu et al., 2025a) 6;11 = 6; — n(0.2y/max(m,n)O; + A6;)

AdaMuon (Si et al., 2025) (Based on Muon) v; = pvi—1 + (1 — p1)O¢ © Oy, ét = ﬁ, Oir1 =

0 — U((Jl'l%ﬁét + A6y).

PolarGrad (Lau et al., 2025) U, H; = polar(g;), 6111 = 0; — ntr(Hy)Uy.

* Polar Decomposition: For any matrix M € R™*"™, it has a polar decomposition A = U, H
(if m > n)or A = HU, (if m < n) for semi-orthogonal matrix U, € R™*" and Hermitian

matrix H € S (if m > n) or ST (if m < n). For ULVT = SVD(A), U, = uvr,
H=VEVT ({fm>n)or H=UXU" (if m < n).

s PolarMuon: m; = m;_1+(1—3)gs, Uy Hy = polar(my), 011 = 0;—n(tr(Hy) U +\0;).

¢ Polar-first: Uth = polar(gt), my = 6mt_1 +(1—ﬂ)Ut, 6t+1 = Gt—n(tr(Ht)mt—&—)\Ht).

AdaDiag (Nguyen et al., 2025) (Only for 2D parameters § € R™*™))If t mod T' = 0, P, Q =

SVD(gy)else P, Q) = Pi1,Q/] 1. gr = P," gt, my = Bimy—1+ (1= B1)Gr. v¢ = Bove—1 + (1 —
B2)g, Ory1 = 0; — nt(Ptﬁ + A0¢)

o AdaDiag++: similarly but ﬁt = PtTtht, 9t+1 = Ht Nt (Pt \/»+€ Q;r +)\6‘t)

COSMOS (Liu et al., 2025b) (Only for 2D parameters § € R™*™): m; = [Byms1 +
(1 = B1)ge, wr = QR(Boug—15.—1 + (1 — 52)gtTgtUt—1), St = U:T(ﬂ2u1‘,—15t—1utT 1+ 1=
B2)g:gt)ut» vi = Povi—1 + (1 — B2)(geuws) © (geue), az = (M)Ut , by =
v (vite)/(1-p5)

Norm(NewtonSchule(w)) 0111 = 0, — nNorm(a; + ybs/m), where Norm(X) =

||mt mtutuTHF
VX

[XIle

Dion (Ahn et al., 2025) (Centralized version. Only for 2D parameters § € R™*™) B, = m;_1 + ¢;.
Then do Power Iteration for 1 iteration: P, = Orthogonalize(B;Q;_1) (orthogonalize P; using
Cholesky decomposition), Ry = B, P;. m; = B; — (1 — p) PR/, Q; = ColumnNormalize(R;)
(Normalize each column of R;), 6; = 6;—1 — n\/m/ nPtQtT .

MARS-M (Liu et al., 2025¢) (Only for 2D parameters 6 € R™*") ¢; = gy + Y7 8 }31 (9¢ —
Vf(0i—1,&)), &¢ = Clip(et,1), mg = Bimu—1 + (1 — p1)é&, O = NewtonSchulz5(my),
0141 = 0 — n:(0.24/max(m, n)O; + \b;).

NorMuon (Li et al., 2025) (Only for 2D parameters § € R™*™) m; = Simi—1 + (1 — B1)g:.
O; = NewtonSchulze5(m;), v; = Bavi—1 + (1 — B2)meancy (O; - O;), Vi = ExpandRoows(v;),
Oy =04/ (VV i+ €), 0141 = 0, — n(M0; + 0.2:/mnO, /|| Oy p-

MuonAdam (Crawshaw et al., 2025) For 2D factors m; = Simi—1 + (1 — B1)gs, 041 = 0 —

nmPolar(m;) with polar decomposition. For 1D parameters, use Adam(W) with different learning
rate.

Conda (Wang et al., 2025a) (Column-Normalized Adam) (Only for 2D parameters 0 € Rm*",
assume m < n) m; = Bymy_1 + (1 — B1)ge. It mod T =0, Uy, X, V," = SVD(my), U; = Ut,

else Uy = Up—1. my = Uy me, ne = BoVier + (1= B2) (U4 g¢)%, Orir = 01 + 00U =,

SSO (Xie et al., 2026) (Only for 2D parameters § € R™*™) m; = Bmy_1 + (1 — B)gs, My =
my /||mt|| r. (0¢,u,v;) = Powerlteration(6;) (to get the top singular value and vectors), ©; =
ugv) . Define R = \/dout/d;r, as uP scaler. A} = arg miny (O, msign(7;+0;)) (using Bisection
search with tolerance €). 0;11 = 0; - R/oy — nR - msign.(m; + A;©,)

5.5 Miscellaneous

BFGS (Broyden—Fletcher—Goldfarb—Shanno) (Fletcher, 1987) d; = —H;g;, o =
T T

arg mina f(9 — Oédt), 9t+1 = Qt + Oétdt, Ht+1 = (I — 7;fritt)THt(I — %}S;t) =+ Z:irs;t, where

St = 9t+1 — 0,y = 9t+1 — Gt-

L-BFGS (Liu & Nocedal, 1989) Based on BFGS, but choose «a; satisfying Wolfe conditions (try
ay = 1first): f(0; + oudy) < £(0;) + B'aurg, dy. Moreover, for m = min{t,m — 1},

t—m t t J+1
Hea = ([T viDHCT] v+ D0 o€ TT ViDsssi (H Vi),
i=t,inv i=t—m j=t—m i=t,inv i=j+1

where H denotes the product of matrices with indices from ¢ to t' < t, and p; = 1/(y, s¢).

i=t,inv
SOAP (Vyas et al., 2024) (Only for 2D parameters) g; = Q] gQr, m = Bimi—1 + (1 ﬁl)gt,
my = sztQR’ vy = Bovi—1 + (1= B2)(91)?, i1 = 0 — QL \F+6QR’ where m; = *ﬁi’
vy = 11“55- Ly = PaLi—1 4+ (1= f2)gg", Ry = faRy—1 + (1 — B2)g " g. For every k steps, obtain
Q1 =QR-Eigenvectors(LQy,), Qr =QR-Eigenvectors(RQ r), where QR-Eigenvectors returns the
eigenvector matrix of the QR decomposition for the input matrix.

Hessian-free (Martens et al., 2010) Define the function B,,(d) = H(6;)d + \d, where H(0;)d =

lim,_, m pt = CG-Minimize(B;, —g;), where CG-Minimize is the linear conjugate
grad1ent algorlthm 9t+1 = 0; + pt. A can be adJusted by Levenberg-Marquardt style heuristic:

f(0e+p)—f(6:)
g0, (P)—qe, (0)
pr > 2, X — 2, otherwise keep A unchanged.

for p; = with gp, (-) the minimization objective of CG, if p; < i, A= %)\, else if

6 Variance Reduction

RProp AdaGrad RMSProp Adam Padam AdamW AMSGrad
(1993) (2010) (2012) (2015) (2018) (2019) (2019)

- - - - — — @ — — —@ —— —"0& —— -0 — — —0 >
Earliest adaptive Adjust learning rate /gcorp ora'tirllg In?egrate RMSProp Unify AMSGrad Decoupled Running maximum of v2
gradient method based on history Xponentia with Nesterov's with SGD weight decay for convergence guarantee

Moving Average momentum

SAG(2013) SVRG(2013) SARAH SPIDER SNVRG SpiderBoost STORM
SDCA(2013)SAGA(2014) (2017) (2018) (2018) (2019) (2019)

L J @ L @ @ ® @
Earliest variance Improved Employ biased recursive Integrate Normalized — Multiple reference Refine SPIDER Simplify SPIDER and
reduction methods Convergence gradient estimation Gradiient Descent points for better with use of large SNVRG with stochastic
Rate for reduced memory for non-convex cases convergence rate constant step size recursive momentum
N
N Adam+ SuperAdam AdaSPIDER MARS
N (2020) (2021) (2022) (2025)
N\
® @ @ @
Estimate the gradient Integrate variance reduction Introduce adaptive Unified optimization framework
only at extrapolated points with AdamW for improved step size in SPIDER reconciling preconditioned gradiient
to reduce the variance of convergence rate methods with variance reduction for
first-order moment into Adam large models

Figure 3: A brief history of variance reduction optimization methods. Some optimizers are omitted.

Since adaptive gradient methods may have risks of high stochastic gradient variance, some re-
searchers consider variance reduction techniques to address this challenge. The core idea, first
proposed by Johnson & Zhang (2013), is as follows:

m; = Vf(0;,&)— vf(atvgt) + VF(x),

where X is some reference point (anchoring point) that is periodically updated. By differentiating
the gradient for different points on the same data point, the variance in optimization can be reduced
significantly.

SAG (Roux et al., 2012) 0,41 = 0y — %Z?zl i+, where at each ¢, one &;, is chosen and y; ; =
V f(6y,&;) and for other samples, keep y. , unchanged.

SDCA (Shalev-Shwartz & Zhang, 2013) (For machine learning task L(0) = 1 > ¢;(07¢;) +

%HGHZ with scalar convex function ¢;), for & = &;, Aoy = arg maxae —¢F (— (-1 + Aa), &) —

L;Hetfl + ﬁ{tAaHz, o = Q1 + Aatei, et = 9,571 + ()\’I’L)_lgtAO[t. Output % ZiTzl Htfl or
randomly chosen from {6;}1 ;.

SAGA (Defazio et al., 2014) Keep a n x d matrix ¢ = {V f (0, &)}, storing the parameters, for
& = &, Or1 = argming{h(0) + 5510 — (0 — [V f(0r, &) — 5 + & 200, @)}, where h(6)
is the regularization function, then update ¢; = 6; and keep other ¢; unchanged.

SVRG (Johnson & Zhang, 2013) For each epoch s, calculate the full gradient g, for 6. For each
iteration ¢, 05 11 = 05+ — (V[(0s1,&st) — V(0s,€s 1) + gs), set 85 = 05 p or randomly chosen
from {GS,t}thl

e 0-SVRG (Yin et ’dl., 2025) 95,t+1 = Hs,t — 77(0475<Vf(95,t;£s,t) - Vf(957£s,t)) + gs)’
Cov(Vf(0s,60.4),V f(0s.t,Ex.t))
Var(V f(0s,€s,t)))

where a; =

10

SARAH (Nguyen et al., 2017) For each epoch s, calculate the full gradient v, o = g, for 85, 051 =
93,0 —NVs,0- For each iteration ¢, Vs,t = vf(os,tv Es,t) - Vf(ﬂg, és,t) +vs,t—1, as,t+1 = as,t —MNVUs,t»
set 0 randomly chosen from {0 ;}7 ;.

Hybrid-SGD (Tran-Dinh et al., 2019) (Hybrid SGD with SARAH) m; = B(mi—1 + g: —
Vf(0i-1,6)) + (1= B)gs, Or1 = 0 — nmy

SPIDER-SFO (Fang et al., 2018) v; = g, for every ¢ steps with batch size S, otherwise v; =
gt — Vf(0,_1,&) + vi_1. Update parameters with Option I 6,41 = 6, — nuv;/||v¢|| until ||v;|| less
than some threshold, or Option II: 8,1 = 6; — vy with 5, = min(n/||ve]|, n/(2¢)). Output 67 or
randomly choose from {;}1_;.

SpiderBOOSt (Wang etal., 2019) Vt = gt — Vf(@t,l, £t) + v¢—1, 9t+1 = Gt — ’I’]’Ut/H’Ut”
AdaSpider (Kavis et al., 2022) If ¢t modn = 0, v; = g, else v; = g¢ — Vf(0p—1,&) + vi—1.
M= 1/(711/450\/"1/26% + Zi:o ||Us||2>» Or1 = 0 — Y0z

SNVRG (Zhou et al., 2020b) For loop parameters {1} }, set T = H{il Tyor T ~ Geom(1/(1 +
Hfil T;)) as the total number of steps. For each step ¢, 7 = min{j : 0 = (¢ mod H{ijﬂ T1),0 <
j< K} For0<1l<r, —16 =0_,;otherwise . = ;. For0 <[<r,—1,g} =g' 3
forr;, +1 <1 < K, gi = (. Then uniformly generate index set I; with size B,,, if 7, > 0,
9 = Birt Dier, V05, &)=V (671 €)], otherwise g0 = Bio Yier, V(0?2 &). And by =

0y —n leio gl. The output parameter is randomly chosen from {6, }7_,.

STORM™ (Levy et al., 2021) (Based on STORM) a;;1

-1
eSS ANPADER

1
(io 1dill2/ait1)t/?
Super-Adam (Huang et al., 2021) (Based on Adam) ¢; = awg: + (1 — ay)[ci—1 + 7(g9: —

VF(0i-1,€))], 7 € {0,1}, 6, = argming{n (c1,0) + 3110 — 04|, }. 1 = (1 —)0 + 116z,
where H, is defined by one of the following cases:

* Case 1: H; = diag(\/v; + \)
e Case2: vy = Bui—1 + (1 — B)||9:

CHe = (v + M)y

* Case 3 (Barzilai-Borwein technique): b, = Itge =V (Hegtt’_léfi)l’ﬁre"”” JHy = (b + M) g

e Case 4-1: v; = Bovy—1 + (1 — Ba)(g¢ — mu)?, H, = diag(y/v; + A)
o Case 4-2: vy = Bovi—1 + (1 — B2)|lgr — mue||, Hy = (ve + M) g

ROOT-SGD (Ll et ‘dl., 2022) VUVt = gt + %(Ut—l - Vf(@t_l, £t))7 9t+1 = Gt — NUt
AdaSVRPS/AdaSVRLS (Jiang & Stich, 2024) Fe, (0) = (0, &) +w (Vf(w,) — V f(wi, &)) +
#TFHQ — 9t||2, 9t+1 = 9t — ntVQFﬁt (Ht) With probablhty DPt+1, W1 = 9t, otherwise Wip1 = Wi
Output + Ztho ;. Here

Fe, (Bt)ngt

,Me—1 + for AdaSVRPS
cpHVFat(@t)\F\/Zi:oFss("s)*FEs -1}

* 7 = min{

. — 1 1 .
N = min{~y; PSR T R TER n¢—1} for AdaSVRLS, where ; can be obtained by

Armijo Backtracking line-search (Armijo, 1966; Nocedal & Wright, 2006): do v = B~
until f(et - ’va(otagt)ast) < f(otagt) - p’YHVf(etagt)Hz

* For AdaSPS and AdaSLS, just set F¢,(0) = f(0,&;) and set F¢, as a predefined lower
bound.

VRAdam (Li et al., 2023) (Based on Adam) m; = B1my_1+(1—51)(g¢+ flﬁl (9: =V f(0:-1,&)),
my

Or11 = 0¢ —W\/@T_H

11

MARS (Yuan et al., 2025) (Based on AdamW/Lion/Shampoo) ¢; = g; —|—%%(gt—v f(6i—1, &),
¢t = Clip(cy, 1), my = Bimy_y + (1 — p1)¢, O = argming{n (my,0) + 5[0 — 64|13, }. or
0111 = argming{n (my, 0) + 5[0 — (1 — nA)0||3;, } with weight decay.

* MARS-AdamW: v; = Bovy_1 + (1 — B2)cZ, Hy 1= /diag(v;) - \}%, (equivalently,
— M2
0t+1 = gt (\/—+ +)\gt))
e MARS-Lion: H; = +/diag(m?), (equivalently, 6;+1 = 0; — n(Sign(my) + \6;))

« MARS-Shampoo: H; = (30 _, g-9.)"*® (XL_, 9. 9-)'/*, (equivalently, Uy, %, V; =
SVD(my) 0i41 = 0; — n(UsV," + M;)), and use Newton-Schulz iteration methods to
approximate SVD decomposition (See Section 5.4 for detail).

* MARS-Approximate: ¢; = g¢ + V¢ 1?}31 (9t — gt—1).

* MVRI (Chang et al., 2025) ;41 = 0; — Oy, where O; € argming ||O — m¢||F such
that OT O = I,,. And MVR2 is the approximate version of MVRI1.

7 Other Topics
7.1 Scheduler-Free Methods

Schedule-Free AdamW (Defazio et al., 2024)

° (Form]) Yt = (1 - ﬂl)zt + Blet’ gt = VQJ(yt)s Tt 1- 52 mln(l t/Twarmup)
2441 = 24 — Wt(ﬁ + Aye), Orp1 = (1 — ¢i41)0 + ci41 2041, Where ¢ 1 = ST ’177

¢ (Form 2) ne = ny1 _ﬁé min(lvt/Twarmup)a gt = VGJ(yt)» At = Tlt(\/vj_,_e +)‘yt)v
Yt+1 = Y+ 'Bllftgll (ye—01) — [Brciar +(1—51)] Ay, 041 = 0+ 1&:@11 (y —0¢) — cer1 Ay,

2
— n
where Ct41 = Ttﬂf

D-Adaptation (Defazio & Mishchenko, 2023)

e Dual Averaging: m; = my_1 + di—16;, = ——L Forc?,otionl:c/i\:
ging t t—1 t—1Gt> Tt SANTAE t, Op t

nellmel|® =320 mid llgital®
2[Ime|]

0t+1 = gt — ntmt. Output ﬁ Z?:l dt,lgt

. N L dini(git1,m 7
or option II: d; = W, dy = max(dy_1,dy),

. : o di— el =3280 ni llgs H
Gradient Descent: 7y = m My = My—1+MGs, dt t 2\|m0,|| +1
dt = maX(dt_l, dt), 9t+1 = Gt — MMt Output ZT Zt 0 7’]th

e AdaGrad: m;y = my_1 + dy_19s, a2 = ar_, + g2, Ay = diag(ay), c?t =
Imell? =528 d2 g s - B
t 2mells —, dt = max(dt_l,dt), 9t+1 = 0,5 — At my. Output

1 T
23":01 d; Et:l dt—let

* SGD: ny, = ndi—1/G, my = My_1 + MG, 2 = Zi—1 — MGe» 41 = B0 + (1 — B)z,

7 — 225;3 Nit1{Git1,mi)
de el s dy

= max(dt,h@).
» Adam version (Based on Adam) m; = Symy—1+(1—p51)ndi—16¢, Op41 = 0:— \ﬁﬂ,
VBasi—1+ (1 =/PB2)ndi—19:, e = V/Bari—1+ (1 —+/Ba)ndi—1 (g, 3t71>(dlag(\/ﬁ+6))—1,

b = G e B = max(di-, di)

Adam++ (Tao et al., 2024) m = max(m_l, Hﬁt — 90”/\/&), Bl,t = BlAtil, my = Bl,tmt_l + (1 —
B1.4)Gt, Oi41 = 0p — - H;lmt, where H; = ¢ + diag(s;), and s, is calculated by either of the
following ways:

12

« Casel: sy = />0, g2
o CaseIl: vy = Bovi—1 + (1 — B2)g?, st = \/(t + 1) maxy <¢(vy)
AdaGrad++ (Tao et al., 2024) Similar to Adam++, but only choose Case I of s;, and A = 0.

7.2 Randomized Updating

GLD (Gradient Langevin Dynamics) (Durmus & Moulines, 2017; Dalalyan, 2017a,b) 8, = 0,
er ~ N(0,I4xa), Or+1 = 0t — nge + /2n/ Ber, where g, is the full gradient.

SGLD (Welling & Teh, 2011) Same as GLD, but g; is the average gradient over samples in small
batch.

SGFS (Ahn et al., 2012) For total number of samples /N and batch size B, v = %. For small
batch {&,;}5 1, vy = (1 — Blue—1 + 5ﬁ Zi1(vf(9t7€t,i) —9)(Vf(0r,&) —a0) T, e ~
N(0,4€), 0111 = 0, + 2(vNuv, + 2£) 7 gi + €1).

SVRG-LD (Xu et al., 2018) For each epoch s, first compute the full gradient g, for 85, gs: =

Gsit — Vf(9s,8&st) + gsr € ~ N(0,1gxa), Or41 = 01 — ngs,e + /2n/Pe;. At the last iteration T’
for each epoch, g; = gs,7.

7.3 Reconciliation of Optimizers

AdaGraft (Agarwal et al., 2020) For optimizers M, D, 0, pq = M(04,61), 0.0 = D(0s, 1),
Or11 =0 + 7“2?;’;\1;‘&5 < (Orp —6r)

7.4 Architecture-specific Optimizers

GaLore (Zhao et al., 2024a) (Adam for LLM layer weight matrix): 6, € R™*" if t mod T = 0
U,S,V = SVD(g:), P, = U[:,: r] (low-rank projection), otherwise P, = P;_;. Then estimate

the low-rank gradient R; = PtT gt, and use Adam to optimize: 0,11 = 6, + nalP; \/’Ulz;e with scale

factor «

Adam-mini (Zhang et al., 2024) (Based on Adam) (For each parameter in parameter blocks) v; =
Bavi—1 + (1 — B2) * Mean(g ® g). For Transformers, partition the parameters of embedding and
output layers by tokens, partition the parameters of query and key matrices by heads, and partition
the parameters of value matrices, attention projection matrices and MLP layers by output neurons.

Adalayer (Zhao et al., 2024b) (Based on Adam, for language model) For each layer: v; = Bov; 1+

(1= B2)|lg: H%/\/ﬁ with p the number of parameters in each layer, 6;,7 = 6; — 7 \/:—:Ljre

AdamC (Based on AdamW) (Only for the layer immediately followed by a normalization operation
including LayerNorm or BatchNorm, otherwise use AdamW): 6,1 = 6; — n(\/UQ; + "L)\ét).
(In Transformers, AdamC is applied to every linear layer except the output layer.)

STORM-PG (Yuan et al.,, 2020) (Based on Reinforce Learning tasks) 6;11 = 6: + ngt,

~ 5N 0, .
g1 = (1 =gl + g1 where g = 53 ,c5di(0er1), 9 = 52 ieplde — 4" (0:)] is
the gradient estimation with different parameters on small batch of trajectories {7;};cp with

. H— 4 H— Ti.h 0
smeh B, and d;(0) = h:()l din(0), a7 (0) = thol 5((7,1,7’;”9,)) din(0), where d;p(0) =
(Xi=o Vlogmo(aslse))(v"r(sn, an) — ba).
SPPO (Wu et al., 2024) (Based on Reinforce Learning tasks)

(ZoS) — (Pl - mlen) -),

where 7; = 7y, is the policy model with the parameter 6;.

Muon-clip (QK-Clip) (Moonshot Al, 2025) (Based on Muon, for Attention mechanism) In each
layer, for input {z;}, query and key weight W, Wy, Siax = (max;; ;W) - (x;Wy,). First
update all parameters using Muon, then if Sy, > 7:

Or1 = arg Hgn E(ﬁmymﬁ(yﬁ-ﬂdﬁt))(

13

* MHA/MQA/GQA: multiply 1/7/Smax to Wq, Wy
* MLA: multiply \/7/Smax to Wg., Wy, and multiply 7/Smax to W,.

7.5 Oracle-based Optimization Methods

Linear Minimization Oracle (LMO): For norm-ball D := {z| ||z|| < p} for some norm || - ||
(Buclidean norm in default), Imo(s) € arg mingep (s, x): for s € RbouXdn;

* 1—-RMS (ColNorm, such as Embedding): col;(s) — _\/doul%;

* 1— oo (Sign): s — —sign(s);

* RMS—RMS (Spectral, such as Linear module): s — — %UVT for U, S, VI =
SVD(s);

row; (s)

* RMS— oo (RowNorm, such as LM Head): row;(s) = —ﬁm

Conditional Gradient Method (CG) (Frank et al., 1956; Clarkson, 2010; Jaggi, 2013) 0,41 =
(1 =n)0; +n - Imo(g:)
Stochastic Conditional Gradient (SCG) (Pethick et al., 2025) m; = Smy—1 + (1 — B)gt, Op41 =

(1 =n)8; +n - Imo(my) (Br41 = 0 + 1 - Imo(m;) for Unconstrained SCG (uSCG)). For different
base optimization method, the LMOs are different:

* Normalized SGD (Hazan et al., 2015) and Momentum Normalized SGD (Cutkosky &
Mehta, 2020): —pﬁ;

* SignSGD (Bernstein et al., 2018) and Signum (Bernstein et al., 2018): —psign(m;);

* Muon (Jordan et al., 2024) (with non-Nesterov based momentum): —pUV T for ULV T =
Scion (Pethick et al., 2025) m; = Smy—1 + (1 — B)gs, 011 = (1 —)0 + 1 - Imoy.y| ., (my)
(0¢+1 = 0 +n-Imoy.y|,,_, , (m) for unconstrained version), where || A[|o—p = sup),| =1 |[[A2][-
Gluon (Riabinin et al., 2025) my = Bmy 1 + (1 — B)gs, Or1 = argmin g, , —g,||<p, (M4, 01)

[lgell Lo
FL1[lgell OF Gr1)e7A

can be To

7.6 Something Beyond Optimizers

In the previous sections, I did not emphasize the changing of the learning rate 7. In this section, I
collected some interesting research related to the changing rule of learning rate (Scheduler).

7.6.1 Scheduler

Warmup-Stable-Decay (WSD) Scheduler (Hu et al., 2024) Different from the Cosine Learning
Rate Scheduler, in MiniCPM, the researchers utilized WSD scheduler (linear warmup-stable learn-
ing rate-decay). It is widely used in industry because it can support continual training, and decaying
schedule in the end is also compatible for downstream tasks fine-tuning.

For intermediate checkpoints, WSD performs decay schedule and starts from the state before decay
when continuing training. However, in WSD-S (Wen et al., 2024), the researchers find that the
dispose of training in decay phase is not necessary, and just starts from the state after decay with the
max learning rate is fine.

7.6.2 Schedule Refinement

Schedule Refinement (Defazio et al., 2023) The researchers perform comprehensive evaluation of
learning rate schedules, give proofs on the convergence of some common optimization approaches,
and proposed some important conclusions and algorithms:

14

* Warm-up followed by linear decay is the best overall non-adaptive schedule, outperforming
cosine decay.

* Schedule Refinement for SGD §; = Median-filter(||g;||, width = 7+T,pad =

(nearest, reflect)), w; = /g\[2, N, = Wt E;";:Hl Wy, N = 1/ maxy ().

2
* Schedule Refinement for Adam g, = Median-filter(|| Zle j;’%H’width = 77, pad =

(nearest, reflect)), w; = g; ', 1) = w; E;Hl Wy, N = 13/ maxy ().

7.6.3 “Scaling Law” of Learning Rate

1P and Tensor Program series (Yang et al., 2022) In Tensor Program series, the researchers led
by Greg Yang' provides theoretical foundation for the “Scaling Law” of hyper-parameter to the
model size. In Tensor Program V (uP), they researched how the best hyper-parameters (including
initialization variances and learning rates for different optimizers of different components in deep
learning models) change with respect to the size of these components.

8 Acknowledgement

Thank Prof. Quanquan Gu, and other students in UCLA AGI Lab including Huizhuo Yuan. Thank
former colleagues from ByteDance Inc. and Moonshot Inc. including Jianlin Su for his blogs at
https://kexue.fm/.

References

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. arXiv preprint arXiv:2002.11803,2020.

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Sungjin Ahn, Anoop Korattikara Balan, and Max Welling. Bayesian posterior sampling via stochas-
tic gradient fisher scoring. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress,
2012. URL http://icml.cc/2012/papers/782.pdf.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251—
276, 1998.

Noah Amsel, David Persson, Christopher Musco, and Robert Gower. The polar express: Op-
timal matrix sign methods and their application to the muon algorithm. arXiv preprint
arXiv:2505.16932, 2025.

Kang An, Yuxing Liu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive
structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1-3, 1966.

Sue Becker. Improving the convergence of backpropagation learning with second order method. In
Proceedings of the 1988 Connectionist Models Summer School, San Mateo, CA. Morgan Kauf-
mann, 1988.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimiza-
tion. In International conference on machine learning, pp. 1817-1853. PMLR, 2022.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

"https://thegregyang.com/

15

https://kexue.fm/
http://icml.cc/2012/papers/782.pdf
https://thegregyang.com/

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560-569. PMLR, 2018.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient descent with adaptive momentum scaling.
arXiv preprint arXiv:2412.17107, 2024.

Da Chang, Yongxiang Liu, and Ganzhao Yuan. On the convergence of muon and beyond. arXiv
preprint arXiv:2509.15816, 2025.

Jinghui Chen and Quanquan Gu. Padam: Closing the generalization gap of adaptive gradient meth-
ods in training deep neural networks. 2018.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1-30, 2010.

Michael Crawshaw, Chirag Modi, Mingrui Liu, and Robert M Gower. An exploration of non-
euclidean gradient descent: Muon and its many variants. arXiv preprint arXiv:2510.09827, 2025.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International confer-
ence on machine learning, pp. 2260-2268. PMLR, 2020.

Ganzhao Yuan21 Da Chang134. Mgup: A momentum-gradient alignment update policy for stochas-
tic optimization.

Arnak Dalalyan. Further and stronger analogy between sampling and optimization: Langevin monte
carlo and gradient descent. In Conference on Learning Theory, pp. 678—689. PMLR, 2017a.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(3):651—
676, 2017b.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449-7479. PMLR, 2023.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 27, 2014.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how
much? adaptive learning rate scheduling by refinement. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted langevin
algorithm. The Annals of Applied Probability, pp. 1551-1587, 2017.

16

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes
preconditioners through kronecker approximation for deep learning. In The Twelfth International
Conference on Learning Representations, 2024.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in neural information
processing systems, 31, 2018.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 2 edition, 1987.
ISBN 978-0-471-91547-8.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In 9tk International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95-110, 1956.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573-582. PMLR, 2016.

Marcus Grum. Learning representations by crystallized back-propagating errors. In Leszek
Rutkowski, Rafal Scherer, Marcin Korytkowski, Witold Pedrycz, Ryszard Tadeusiewicz, and
Jacek M. Zurada (eds.), Artificial Intelligence and Soft Computing - 22nd International Con-
ference, ICAISC 2023, Zakopane, Poland, June 18-22, 2023, Proceedings, Part I, volume
14125 of Lecture Notes in Computer Science, pp. 78—100. Springer, 2023. doi: 10.1007/
978-3-031-42505-9\ 8. URL https://doi.org/10.1007/978-3-031-42505-9_8.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2):169-192, 2007.

Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex opti-
mization. Advances in neural information processing systems, 28, 2015.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum opti-
mizers on scale-invariant weights. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Nicholas J Higham. Functions of matrices. society for industrial and applied mathematics, 2008.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: faster and universal framework of adaptive
gradients. Advances in Neural Information Processing Systems, 34:9074-9085, 2021.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059-1076,
1989.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427-435. PMLR, 2013.

17

https://doi.org/10.1007/978-3-031-42505-9_8

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtarik, Michael W Mahoney, and Martin Takac.
Doubly adaptive scaled algorithm for machine learning using second-order information. In Inter-
national Conference on Learning Representations.

Xiaowen Jiang and Sebastian U Stich. Adaptive sgd with polyak stepsize and line-search: Robust
convergence and variance reduction. Advances in Neural Information Processing Systems, 36,
2024.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https://
kellerjordan.github.io/posts/muon/.

Ali Kavis, Stratis Skoulakis, Kimon Antonakopoulos, Leello Tadesse Dadi, and Volkan Cevher.
Adaptive stochastic variance reduction for non-convex finite-sum minimization. Advances in
Neural Information Processing Systems, 35:23524-23538, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905-5914. PMLR, 2021.

Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
unifying preconditioning perspective. arXiv preprint arXiv:2505.21799, 2025.

Kfir Levy, Ali Kavis, and Volkan Cevher. Storm+: Fully adaptive sgd with recursive momentum for
nonconvex optimization. Advances in Neural Information Processing Systems, 34:20571-20582,
2021.

Chris Junchi Li, Wenlong Mou, Martin Wainwright, and Michael Jordan. Root-sgd: Sharp
nonasymptotics and asymptotic efficiency in a single algorithm. In Conference on Learning The-
ory, pp. 909-981. PMLR, 2022.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assump-
tions. Advances in Neural Information Processing Systems, 36:52166-52196, 2023.

Wenjie Li, Zhaoyang Zhang, Xinjiang Wang, and Ping Luo. Adax: Adaptive gradient descent with
exponential long term memory. arXiv preprint arXiv:2004.09740, 2020.

Zichong Li, Liming Liu, Chen Liang, Weizhu Chen, and Tuo Zhao. Normuon: Making muon more
efficient and scalable. arXiv preprint arXiv:2510.05491, 2025.

Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training
with one line of code. arXiv preprint arXiv:2411.16085, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503-528, 1989.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Tivelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024b.

18

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025a.

Liming Liu, Zhenghao Xu, Zixuan Zhang, Hao Kang, Zichong Li, Chen Liang, Weizhu Chen, and
Tuo Zhao. Cosmos: A hybrid adaptive optimizer for memory-efficient training of llms. arXiv
preprint arXiv:2502.17410, 2025b.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020a.

Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam *: A stochastic method
with adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020b.

Yifeng Liu, Angela Yuan, and Quanquan Gu. Mars-m: When variance reduction meets matrices.
arXiv preprint arXiv:2510.21800, 2025c.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360-12370, 2022.

Ilya Loshchilov. Weight norm control. arXiv preprint arXiv:2311.11446,2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417. PMLR, 2015.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735-742,
2010.

Moonshot Al. Kimi K2: Open Agentic Intelligence, 2025. URL https://moonshotai.github.
io/Kimi-K2/. Accessed: 2025-07-17.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate o
(1/k2). In Dokl akad nauk Sssr, volume 269, pp. 543, 1983.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taka¢. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In International conference on machine
learning, pp. 2613-2621. PMLR, 2017.

Son Nguyen, Bo Liu, Lizhang Chen, and Qiang Liu. Improving adaptive moment optimization via
preconditioner diagonalization. arXiv preprint arXiv:2502.07488, 2025.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, New York, NY, USA, 2e
edition, 2006.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older.
arXiv preprint arXiv:2409.03137, 2024.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In Yoshua
Bengio and Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained Imos. arXiv preprint
arXiv:2502.07529, 2025.

19

https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838-855, 1992.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtarik. Gluon: Making muon &
scion great again!(bridging theory and practice of Imo-based optimizers for 1lms). arXiv preprint
arXiv:2505.13416, 2025.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: the rprop
algorithm. In IEEE International Conference on Neural Networks, pp. 586-591 vol.1, 1993. doi:
10.1109/ICNN.1993.298623.

Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential
convergence _rate for finite training sets. Advances in neural information processing systems, 25,
2012.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International confer-
ence on machine learning, pp. 343-351. PMLR, 2013.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(1), 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. arXiv preprint
arXiv:2507.11005, 2025.

Jianlin Su. Tiger: A tight-fisted optimizer. https://github.com/bojone/tiger, 2023.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi liyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any o with the optimal rate. Advances in Neural Information Processing
Systems, 37:72438-72474, 2024.

Yuanzhe Tao, Huizhuo Yuan, Xun Zhou, Yuan Cao, and Quanquan Gu. Towards simple and provable
parameter-free adaptive gradient methods, 2024. URL https://arxiv.org/abs/2412.19444.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Ran Tian and Ankur P Parikh. Amos: An adam-style optimizer with adaptive weight decay towards
model-oriented scale. arXiv preprint arXiv:2210.11693, 2022.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26—
31, 2012.

Phuong Thi Tran et al. On the convergence proof of amsgrad and a new version. IEEE Access, 7:
61706-61716, 2019.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. Hybrid stochastic gradi-
ent descent algorithms for stochastic nonconvex optimization. arXiv preprint arXiv:1905.05920,
2019.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

20

https://github.com/bojone/tiger
https://arxiv.org/abs/2412.19444

Junjie Wang, Pan Zhou, Yiming Dong, Huan Li, Jia Li, Xun Zhou, Qicheng Lao, Cong Fang, and
Zhouchen Lin. Conda: Column-normalized adam for training large language models faster. arXiv
preprint arXiv:2509.24218, 2025a.

Mingze Wang, Jinbo Wang, Jiaqi Zhang, Wei Wang, Peng Pei, Xunliang Cai, Lei Wu, et al.
Gradpower: Powering gradients for faster language model pre-training. arXiv preprint
arXiv:2505.24275, 2025b.

Shaowen Wang, Anan Liu, Jian Xiao, Huan Liu, Yuekui Yang, Cong Xu, Qiangian Pu, Suncong
Zheng, Wei Zhang, Di Wang, et al. Cadam: Confidence-based optimization for online learning.
arXiv preprint arXiv:2411.19647, 2024.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster
variance reduction algorithms. Advances in Neural Information Processing Systems, 32, 2019.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1-30, 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681-688.
Citeseer, 2011.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Tian Xie, Haoming Luo, Haoyu Tang, Yiwen Hu, Jason Klein Liu, Qingnan Ren, Yang Wang,
Wayne Xin Zhao, Rui Yan, Bing Su, Chong Luo, and Baining Guo. Controlled llm training on
spectral sphere, 2026. URL https://arxiv.org/abs/2601.08393.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
Disentangling the effects of adaptive learning rate and momentum. In International conference
on machine learning, pp. 24430-24459. PMLR, 2022.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynam-
ics based algorithms for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665-10673, 2021.

Yida Yin, Zhiqiu Xu, Zhiyuan Li, Trevor Darrell, and Zhuang Liu. A coefficient makes svrg effec-
tive. In The Thirteenth International Conference on Learning Representations, 2025.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learn-
ing: Training BERT in 76 minutes. In 8tk International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

21

https://arxiv.org/abs/2601.08393

Huizhuo Yuan, Xiangru Lian, Ji Liu, and Yuren Zhou. Stochastic recursive momentum for policy
gradient methods. arXiv preprint arXiv:2003.04302, 2020.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Quanquan Gu, et al. Mars: Unleashing the power of vari-
ance reduction for training large models. In Forty-second International Conference on Machine
Learning, 2025.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep learning. arXiv
preprint arXiv:2106.11342, pp. 505, 2021.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383-15393, 2020.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024,
2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

Beitong Zhou, Jun Liu, Weigao Sun, Ruijuan Chen, Claire J Tomlin, and Ye Yuan. pbsgd: Powered
stochastic gradient descent methods for accelerated non-convex optimization. In IJCAI, pp. 3258—
3266, 2020a.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. Journal of machine learning research, 21(103):1-63, 2020b.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795-18806, 2020.

22

	Introduction
	From Gradient Descent to Adaptive Learning
	Notations
	Newton's Method
	Gradient Descent (GD)
	Momentum and Related

	Adam and Derivatives
	Other forms for Adam
	Hessian Matrices
	Matrix form of vt

	Derivatives of Adam
	Minute Modification
	Clipping Involved
	More EMA Involved
	More complicated Design

	Sign of Gradient
	Preconditioned Optimizers and Second-Order Methods
	Diagonalized Hessian Matrices
	Hutchinson's Method for Hessian Estimation
	Fisher Information Matrix
	SVD Approximation
	Miscellaneous

	Variance Reduction
	Other Topics
	Scheduler-Free Methods
	Randomized Updating
	Reconciliation of Optimizers
	Architecture-specific Optimizers
	Oracle-based Optimization Methods
	Something Beyond Optimizers
	Scheduler
	Schedule Refinement
	``Scaling Law'' of Learning Rate

	Acknowledgement

